

Appunti delle lezioni di Elettronica Analogica con Applicazioni A.A. 2003/2004

> Prof. Alessandro Trifiletti Università degli studi di Roma "La Sapienza"

> > versione 1.0a

1

Amplificatore operazionale

L'amplificatore operazionale è un dispositivo elettronico dotato di due ingressi e una uscita:

Ingresso invertente

Ingresso non invertente

figura 1 - Schema di un amplificatore operazionale

Posto:

- > A+: guadagno dell'ingresso non invertente
- > A-: guadagno dell'ingresso invertente
- > applicando una tensione V⁺ si ottiene: $V_{out} = A^+ V^+$
- > applicando una tensione V⁻ si ottiene: $V_{out} = A^- V^-$
- > applicando entrambe le tensioni si ottiene: $V_{out} = A^+ V^+ A^- V^-$

Un amplificatore si dice ideale quando sono verificate le seguenti condizioni:

- \blacktriangleright A⁺ = A⁻ = ∞
- > L'impedenza di ingresso degli ingressi invertente e non invertente è infinita
- L'impedenza di uscita è nulla
- A⁺ e A⁻ non dipendono dalla frequenza (ampiezza di banda infinita)
- > Non vi è limite sulla dinamica delle ampiezze dei segnali di ingresso e di uscita

Sotto queste ipotesi si ottiene il circuito equivalente illustrato nella figura 2.

figura 2 – Circuito equivalente dell'amplificatore operazionale ideale

L'amplificatore operazionale costituisce l'elemento base per la realizzazione di circuiti di elaborazione analogica di segnali per impieghi nella strumentazione. Non può essere

implegato da solo in quanto, poiché il guadagno è infinito, una qualunque tensione di ingresso V⁺-V⁻ \neq 0, porterebbe l'uscita ad assumere valore infinito. E' quindi necessario inserire l'amplificatore operazionale in un circuito tale da consentire che sia sempre V⁺-V⁻ = 0.

Consideriamo la configurazione invertente illustrata nella figura 3:

figura 3 - Configurazione invertente dell'amplificatore operazionale

Poiché l'impedenza di ingresso è infinita, sarà vero che $I_1=I_2$. Essendo inoltre, nel caso ideale, l'amplificazione infinita, dovrà essere V⁺-V⁻ = 0 e quindi V⁺=V⁻, cioè il morsetto invertente e quello non invertente si trovano allo stesso potenziale. D'altra parte, essendo $R_i=\infty$, al morsetto invertente ed a quello non invertente non si ha assorbimento di corrente e quindi abbiamo una massa rispetto alle tensioni e non rispetto alle correnti (*principio della massa virtuale*).

In definitiva avrò $V^+ = V^- = 0$ e quindi:

$$I_2 = I_1 = \frac{V_{in}}{R_1}$$
$$V_{out} = -R_2 I_2 = -\frac{R_2}{R_1} V_{in}$$

Si ha pertanto:

$$A_{v} = \frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

Con una impedenza di ingresso $Z_{in} = R_1$ e una impedenza di uscita $Z_{out} = 0$. Consideriamo ora la configurazione non invertente illustrata nella figura 4.

figura 4 - Configurazione non invertente dell'amplificatore operazionale

Risulta sempre V⁺ = V⁻ e le correnti entranti ai morsetti invertente e non invertente sono sempre nulle, a causa dell'impedenza di ingresso infinita dell'amplificatore. Quindi, essendo $I_3 = I_4$, si ha:

$$V = V^+ = \frac{R_4}{R_3 + R_4} V_{in}$$

dalla quale si ottiene che $I_1 = V^2/R_1$ ed essendo $I_1 = I_2$ si ricava:

$$V_{out} = R_2 I_2 + R_1 I_1 = \frac{R_1 + R_2}{R_1} V_{in}$$

Sostituendo a V⁻ l'espressione ricavata prima si ottiene:

$$V_{out} = \frac{R_4}{R_3 + R_4} - \frac{R_1 + R_2}{R_1} V_{in}$$

e quindi un'amplificazione:

$$A_{v} = \frac{R_{4}}{R_{3} + R_{4}} \frac{R_{1} + R_{2}}{R_{1}}$$

con una impedenza di ingresso $Z_{in} = R_3 + R_4$, ed una impedenza di uscita $Z_{out} = 0$. Consideriamo ora il circuito di figura 5 che rappresenta un sommatore algebrico.

figura 5 – Schema elettrico di un operazionale in configurazione di sommatore algebrico

Per risolvere il circuito è possibile applicare il principio di sovrapposizione degli effetti, considerando cioè i generatori V_1 e V_2 presenti uno alla volta. Considerando dapprima il generatore V_1 e cortocircuitando V_2 si ottiene:

$$V_{out1} = -\frac{R_2}{R_1} V_1$$

Considerando ora il generatore V₂ e cortocircuitando V₁ si ottiene:

$$V_{out2} = \frac{R_4}{R_3 + R_4} - \frac{R_1 + R_2}{R_1} V_2$$

In definitive la Vout complessiva sarà data da:

$$V_{out} = V_{out1} + V_{out2} = \frac{R_4}{R_3 + R_4} \frac{R_1 + R_2}{R_1} V_2 - \frac{R_2}{R_1} V_1$$

con impedenze di ingresso $Z_{in1} = R_1$, $Z_{in2} = R_3 + R_4$ e impedenza di uscita $Z_{out} = 0$.

Come è stato possibile notare dagli schemi illustrati precedentemente, se l'amplificatore è ideale, gli unici elementi che possono influenzare il guadagno sono le resistenze. L'incertezza con cui è noto il guadagno dipende quindi dall'incertezza con cui sono note le resistenze e può essere espressa utilizzando l'espressione del differenziale totale:

$$\frac{\mathrm{dG}}{\mathrm{G}} = \frac{1}{\mathrm{G}} \left\{ \frac{\partial \mathrm{G}}{\mathrm{R}_1} \, \mathrm{dR}_1 + \frac{\partial \mathrm{G}}{\mathrm{R}_2} \, \mathrm{dR}_2 + \dots \right\}$$

Analizzando la configurazione invertente ed essendo:

$$G = -\frac{R_2}{R_1} \qquad \frac{\partial G}{R_1} = \frac{R_2}{(R_1)^2} \qquad \frac{\partial G}{R_2} = -\frac{1}{R_1}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

si ottiene:

$$\frac{dG}{G} = -\frac{R_1}{R_2} \left\{ \frac{R_2}{(R_1)^2} dR_1 - \frac{1}{R_1} dR_2 \right\} = -\frac{dR_1}{R_1} + \frac{dR_2}{R_2}$$

Analizziamo ora la figura 6 che mostra lo schema di un inseguitore di tensione (*voltage follower*).

figura 6 - Schema elettrico di un operazionale in configurazione di inseguitore di tensione

Come si può vedere è una configurazione di amplificatore non invertente, con $R_1 = \infty$, $R_2 = 0$ e V⁺ = V_{in}. Pertanto:

$$V_{out} = \frac{R_1 + R_2}{R_1} V_{in} = \left(1 + \frac{R_2}{R_1}\right) V_{in} = V_{in}$$

con una impedenza di ingresso infinita e una impedenza di uscita nulla. Proprio per queste caratteristiche, l'inseguitore di tensione viene impiegato come adattatore di impedenza.

Nella figura 7 è riportato lo schema di un integratore ideale.

figura 7 - Schema elettrico di un integratore integratore ideale

Osservando lo schema si ha:

6

$$\mathbf{v}_{\text{out}}(t) = -\frac{1}{C} \int_{0}^{t} \mathbf{i}_{2}(\tau) \, d\tau$$

ed essendo $i_2(t) = i_1(t) = v_{in}(t)/R_1$ segue che:

$$\mathbf{v}_{\text{out}}(\mathbf{t}) = -\frac{1}{R_1 C} \int_0^t \mathbf{v}_{\text{in}}(\tau) \, d\tau$$

In termini di trasformata di Laplace diventa:

$$V_{out}(s) = -\frac{1}{s R_1 C} V_{in}(s)$$

Nella figura 8 viene illustrato l'integratore reale che tiene conto della resistenza interna della capacità C, indicate con R₂.

figura 8 - Schema elettrico di un integratore reale

Calcolando, in termini di trasformata di Laplace, l'impedenza Z_2 data dal parallelo tra la capacità C e la resistenza R_2 , si ottiene:

$$Z_2 = -\frac{R_2}{1 + s R_2 C}$$

dalla quale derive una relazione ingresso-uscita (funzione di trasferimento):

$$V_{out}(s) = -\frac{R_2}{R_1} - \frac{1}{1 + s R_2 C} V_{in}(s)$$

Per quanto riguarda l'analisi della risposta in frequenza dell'integratore reale, la funzione di trasferimento presenta un polo per s = - $(1/C R_2)$.

Sostituendo s con j ω si ottiene l'andamento della risposta in frequenza illustrato nella figura 9.

Come si nota dal grafico, l'operazionale si comporta da integratore solo per $\omega > 1/C R_2$. Nella figura 10 invece, viene riportato lo schema del derivatore ideale.

figura 10 - Schema elettrico del derivatore ideale

Essendo $i_1(t) = C [dv_{in}(t)/dt]$, segue che:

$$v_{out}(t) = -R i_2(t) = -R i_1(t) = -R C \frac{dv_{in}(t)}{dt}$$

che in termini di trasformata di Laplace diventa:

$$V_{out}(s) = -RCsV_{in}(s)$$

Alle alte frequenze il guadagno è elevato e il circuito può diventare instabile, mentre la capacità di ingresso può creare problemi alle basse frequenze.

Nella figura 11 viene riportato lo schema del derivatore reale che tiene conto degli elementi parassiti dei componenti passivi.

Senza entrare pienamente nel calcolo, considerando le impedenze generalizzate di ingresso e di uscita secondo Laplace, la funzione di trasferimento del circuito è data da:

$$V_{out}(s) = -\frac{R_2}{R_1} \frac{1 + s R_1 C_1}{1 + s R_2 C_2} V_{in}(s)$$

Osservando l'espressione precedente, noto la presenza di un polo e di uno zero con i valori rispettivamente di:

$$s = -\frac{1}{R_2 C_2}$$
 $s = -\frac{1}{R_1 C_1}$

Sostituendo s con j ω si ottiene, per la risposta in frequenza, l'andamento illustrato nella figura 12.

Come si può notare dal grafico l'operazionale funziona da derivatore solo per:

$$\frac{1}{R_1 C_1} < \omega < \frac{1}{R_2 C_2}$$

Nella figura 13 viene illustrato lo schema di un amplificatore operazionale in una configurazione di conversione corrente-tensione.

E' immediato verificare che $V_{out} = -R I_{in}$ e che l'impedenza di ingresso $Z_{in} = 0$ e l'impedenza di uscita $Z_{out} = 0$.

Nella figura 14 invece, viene riportato lo schema amplificatore operazionale in una configurazione di conversione tensione-corrente (amplificatore a transconduttanza).

Dovendo essere $V^+ = V^-$, dovrà essere anche $V_{in} = R I_{out}$ e quindi:

$$I_{out} = \frac{V_{in}}{R}$$

con una impedenza di ingresso $Z_{in} = \infty$ ed una impedenza di ingresso $Z_{out} = \infty$.

Ingresso non invertente

figura	15 _	Struttura	dell'am	nlificatore	operazionale
ngura	13 -	Juana	uch ann	princatore	operazionare

Riconsiderando la struttura dell'amplificatore operazionale si ha che V_{out} = A⁺ V⁺ - A⁻ V⁻ e, mentre nell'amplificatore ideale era A⁺ = A⁻, nell'amplificatore reale è A⁺ \neq A⁻. La precedente relazione di ingresso-uscita può essere riscritta nel seguente modo:

$$V_{out} = (A^+ - A^-) \frac{V^+ + V^-}{2} + \frac{A^+ + A^-}{2} (V^+ - V^-) = A_{cm} V_{cm} + A_d V_d$$

dove V_{cm} è la tensione di modo comune, V_d è la tensione di modo differenziale, A_{cm} è il guadagno di modo comune e A_d è il guadagno di modo differenziale.

Il rapporto tra il guadagno di modo differenziale A_d e il guadagno di modo comune A_{cm} definisce il rapporto di reiezione di modo comune (*Common Mode Rejection Ratio*):

$$CMMR = \frac{\frac{A^+ + A^-}{2}}{A^+ + A^-}$$

Se l'amplificatore è ideale CMRR = ∞ essendo A⁺ = A⁻ infatti, l'amplificatore ideale amplifica solamente la tensione di modo differenziale.

II CMMR è un parametro fondamentale per valutare le prestazioni di un amplificatore operazionale reale:

- Tanto più grande è il CMRR, tanto più l'amplificatore tende ad amplificare solamente la differenza V⁺ - V⁻ e non anche la tensione di modo comune.
- Valori tipici del CMRR variano tra 80 dB (10⁴) e 120 dB (10⁶) e questi valori dipendono fortemente dalla frequenza.

Nell'amplificatore reale il guadagno di modo differenziale A_d non è infinito come nel caso dell'amplificatore ideale, ma assume valori dello stesso ordine di grandezza del CMRR e varia anche questo con la frequenza. Per piccoli segnali (1/10 della dinamica massima consentita), il comportamento ad anello aperto del guadagno di modo differenziale al variare della frequenza può essere schematizzato con un comportamento di tipo passa-Michele Marino – mmelectronics@tim.it 11 Elettronica analogica con applicazioni Università degli studi di Roma "La Sapienza" Prof. Alessandro Trifiletti

basso del primo ordine (1 polo oltre la frequenza del quale il guadagno diminuisce di 20 dB per decade). In genere ogni costruttore indica il valore della frequenza per cui il prodotto banda guadagno (GBW) è pari a 1. In questo modo è possibile ottenere immediatamente i limiti di banda (o guadagno) ottenibili retroazionando il dispositivo, una volta stabilito il guadagno (o la banda) che si vogliono ottenere ad anello chiuso. Esempi di impiego del GBW:

 Si supponga che GBW = 1 per f = 1 MHz. Questo significa che per f = 1 MHz, il guadagno è pari a 1 (0 dB).

 Si voglia avere un guadagno di 50 dB. Poiché il guadagno ha la pendenza di 20dB/decade, 50 dB corrispondono a 1,5 decadi, e quindi la banda richiesta sarà di 5 KHz.

Si chiama full-power bandwidth la banda di frequenza nella quale il dispositivo è in grado di fornire una tensione in uscita con ampiezza pari alla massima dinamica in uscita. L'ampiezza di questa banda è di solito molto minore di quella che caratterizza il comportamento per piccoli segnali.

figura 17 - Grafico relativo all'esempio 2

In un amplificatore operazionale possono essere definite due tipi di impedenze di ingresso:

- impedenza di ingresso di modo differenziale: è l'impedenza vista dai due morsetti di ingresso;
- impedenza di ingresso di modo comune: è l'impedenza tra un ingresso ed i punti ad un potenziale di riferimento.

Le impedenze di ingresso di amplificatore operazionale reale sono elevate, ma non infinite; hanno valori simili e sono schematizzabili con il circuito equivalente di figura 18.

L'impedenza di uscita tipica, ad anello aperto, è di $10^1 \div 10^2 \Omega$ e viene ridotta chiudendo l'anello (perché vede in parallelo l'impedenza sul ramo di retroazione). Per quanto riguarda la dinamica di ingresso e di uscita, questa dipende dalla tensione di

alimentazione e i valori tipici sono compresi nei 10V di picco, con correnti in uscita di alcune decine di mA.

Collegando a massa entrambi gli ingressi dell'amplificatore, si rileva la presenza di correnti assorbite ed erogate. In termini di circuito equivale allo schema di figura 19.

figura 19 - Correnti di offset

La corrente $I_{IO} = I_{IB}^+ - I_{IB}^- e detta corrente di offset. Il valore di queste correnti è dell'ordine$ di 100 fA (tecnologie JFET e CMOS) fino a 10 µA (tecnologia BJT) e dipende fortemente $dalla temperatura. Analogamente è possibile rilevare una tensione <math>V_{out} \neq 0$ in uscita ad un amplificatore reale anche se gli ingressi sono entrambi collegati a massa. Questa tensione in uscita è interpretabile come l'effetto di una *tensione di offset* V_{IO} applicata ad uno degli ingressi.

Il valore di V_{IO} dipende dalla tecnologia ($10^{-5}V$ per la tecnologia BJT, $10^{-4}V$ per la tecnologia BJFET e CMOS) e varia al variare della temperatura.

Se in ingresso ad un amplificatore reale viene applicato un gradino di tensione (segnale con derivata infinita), in uscita non si avrà più un gradino. Con il termine slew rate si intende la massima derivata ottenibile sul segnale in uscita ed solitamente espressa in V/µs. Quindi lo slew rate rappresenta la massima velocità di variazione della tensione di uscita nel passaggio dal valore massimo positivo al massimo negativo e viceversa, in risposta ad un'onda quadra. Per un segnale in ingresso sinusoidale, lo slew rate limita la massima frequenza f_p di un segnale in ingresso che dia in uscita un segnale con ampiezza pari alla massima dinamica.

Esempio:

Si consideri un segnale sinusoidale con valore di picco e_p pari a metà della dinamica massima, cioè $e(t) = e_p \sin (2 \pi f_p t)$. Calcolando la derivata di e(t) si ottiene:

$$\frac{de(t)}{dt} = 2 \pi f_p e_p \cos(2 \pi f_p t)$$

La derivata massima si ha nell'origine e, per definizione lo slew rate è:

$$SR = 2 \ \pi \ f_p \ e_p$$

Pertanto, la massima frequenza per cui l'uscita copre l'intera dinamica è:

$$f_{\rm p} = \frac{{\rm SR}}{2\,\pi\,e_{\rm p}}$$

Posto per esempio SR = 1 V/ μ s, e_p = 10V, si ottiene f_p = 16 KHz.

I disturbi presenti sull'alimentazione degli amplificatori operazionali possono propagarsi fino all'uscita. Il PSRR (*Power Supply Rejection Ratio*) indica la capacità dell'amplificatore di arrestare la propagazione dei disturbi prima che arrivino all'uscita e quindi, maggiore è il PSRR, minore è l'effetto dei disturbi sull'alimentazione sull'uscita. Il PSRR è solitamente misurato in dB.

Si consideri la configurazione invertente di figura?, con schematizzati gli effetti della corrente di bias e della tensione di offset.

figura 21 - Configurazione invertente con effetto della corrente di bias e della tensione di offset

Applicando il principio della sovrapposizione degli effetti, cioè separando gli effetti dovuti alla corrente di bias e quelli dovuti alla tensione di offset e infine sommandoli si ottiene:

15

E' possibile elaborare la relazione trovata nel seguente modo:

Si noti che, poiché l'impedenza di ingresso vale $Z_{in} = R_1$, valori elevati dell'impedenza di ingresso aumentano il contributo di errore dovuto alla corrente di bias ad alla tensione di offset.

Si consideri ora il circuito di figura 22 che illustra un accorgimento per ridurre gli errori dovuti alla corrente di bias.

figura 22 – Configurazione invertente con resistenza sull'ingresso non invertente

E' immediato verificare che la resistenza Rc non modifica il comportamento del circuito in presenza di un amplificatore ideale. Infatti:

$$v_{out} = -\frac{R_2}{R_1} v_{in}$$

Gli effetti dei parametri parassiti possono essere valutati considerando il circuito di figura 23.

figura 23 - Considerazione degli effetti parassiti

si ha:

$$v_{out} = -\frac{R_2}{R_1} v_{in} + \frac{R_1 + R_2}{R_1} e_{os} - R_2 i_{b} - R_c \frac{R_1 + R_2}{R_1} i_{b} =$$
$$= -\frac{R_2}{R_1} \left\{ v_{in} + \frac{R_1 + R_2}{R_2} e_{os} - R_1 i_{b} + R_1 i_{b} \right\} =$$
$$= -\frac{R_2}{R_1} \left\{ v_{in} + \frac{R_1 + R_2}{R_2} e_{os} - R_1 i_{d} \right\}$$

dove $i_d = i_b - i_b < i_b, i_b$. L'introduzione di R_c diminuisce l'effetto della corrente di bias. Il rumore di tensione negli amplificatori è dovuto al rumore termico, predominante alle alte frequenze, ad al rumore a bassa frequenza (o rumore 1/f). L'andamento della tensione di rumore è indicativamente quella di figura 24.

La frequenza f_c del grafico è detta corner frequency e indica la frequenza al di sotto della quale è significativo il rumore 1/f (rumore a bassa frequenza). Il rumore 1/f limita le prestazioni dell'amplificatore a bassa frequenza per cui, per impieghi a bassa frequenza, è necessario avere una bassa corner frequency. Il rumore di corrente invece, è essenzialmente dovuto al rumore di carica delle fluttuazioni della corrente nelle giunzioni dei semiconduttori ed è un rumore bianco, con distribuzione di tipo gaussiano.

Amplificatori operazionali di corrente (COA)

Come sappiamo gli amplificatori operazionali di tensione (*VOA – Voltage Operational Amplifier*) sono i circuiti più utilizzati nel mondo dell'elettronica analogica soprattutto nei circuiti di elaborazione a bassa frequenza. Dall'esposizione presentata nelle pagine precedenti risulta chiaro che i VOA sono caratterizzati da una larghezza di banda limitata e da una limitata slew-rate che rende difficile il loro utilizzo in applicazioni di ampio segnale in alta frequenza. Per questo motivo si è pensato di introdurre gli amplificatori operazionali di corrente (*COA – Current Operational Amplifier*) che lavorano con grandezze definite da correnti anziché da tensioni. Nella figura 25 viene riportato il simbolo generale di un COA e il relativo circuito interno.

figura 25 – Simbolo rappresentativo di un COA e relativo schema interno

Un COA ideale presenta una resistenza di ingresso nulla, una resistenza di uscita infinita e un guadagno di corrente infinito, e quindi possiamo dire che è il duale del VOA dove la resistenza di ingresso è infinita, la resistenza di uscita nulla e il guadagno di tensione infinito.

СОА	VOA
$R_i = 0$	$R_i = \infty$
$R_o = \infty$	$R_o = 0$
$A_{I} = \infty$	$A_V = \infty$

Come primo caso di analisi di COA consideriamo il circuito di figura 26.

Se supponiamo di essere nel caso ideale si ha:

$$I_{R2} = I_S$$

e quindi la tensione ai capi di R1 è data da:

$$V_{R1} = - R_2 I_S$$

La corrente in R₁ è data da:

figura 26 - COA ideale in configurazione non invertente

Si ottiene la seguente funzione di trasferimento:

$$\frac{\mathbf{I}_{L1}}{\mathbf{I}_{S}} = -\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}$$

La corrente di uscita è data da:

$$I_{o}^{+} = I_{S} - I_{L1} = I_{S} \left(1 + \frac{R_{2}}{R_{1}} \right)$$

Essendo $I_{0^+} = I_{0^-} = I_{L2}$, si ha l'altra funzione di trasferimento:

$$\frac{I_{L2}}{I_S} = 1 + \frac{R_2}{R_1}$$

Naturalmente il guadagno d'anello LG (Loop Gain) è infinito e l'errore dovuto al confronto delle correnti nella reazione tende a zero. Consideriamo ora il caso reale analizzando il circuito di figura 27 con $R_i > 0$ e $A_l < \infty$.

Al nodo di ingresso si ha:

$$I_{S} = G_{2} (V_{i} - V_{o}^{+}) + G_{i} V_{i} = V_{i} (G_{i} + G_{2}) - V_{o}^{+} G_{2}$$

Al nodo di uscita si ha invece:

$$G_2 (V_i - V_0^+) = A_1 I_i + G_1 V_0^+$$
$$G_2 V_i - A_1 I_i = V_0^+ (G_1 + G_2)$$

Poiché $I_i = G_i V_i$, sostituendo si ha:

$$G_2 V_i - A_I G_i V_i = V_i (G_2 - A_I G_i) = V_0^+ (G_1 + G_2)$$

In definitiva si ottiene la seguente funzione di trasferimento in tensione:

$$\frac{V_i}{V_o^+} = \frac{G_1 + G_2}{G_2 - A_I G_i}$$

Sostituendo il valore di V_i appena ricavato nell'equazione relativa al nodo di ingresso si ha:

$$I_{S} = V_{0^{+}} \left[\frac{(G_{i} + G_{2})(G_{1} + G_{2})}{G_{2} - A_{I}G_{i}} - G_{2} \right] = V_{0^{+}} \left(\frac{G_{i}G_{1} + G_{i}G_{2} + G_{1}G_{2} + G_{2}G_{2} - G_{2}G_{2} + A_{I}G_{i}G_{2}}{G_{2} - A_{I}G_{i}} \right)$$

Dalla precedente relazione si ha quindi:

$$\frac{V_{o^{+}}}{I_{S}} = \frac{G_{2} - A_{I}G_{i}}{G_{i}G_{1} + G_{i}G_{2} + G_{1}G_{2} + A_{I}G_{i}G_{2}}$$

La corrente di carico I_{L1} è data da:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

$$I_{L1} = V_0^+ G_1 = \left(\frac{V_0^+}{I_S}\right) I_S G_1$$

dalla quale:

$$\frac{I_{L1}}{I_{S}} = \left(\frac{V_{o^{+}}}{I_{S}}\right) G_{1}$$

Sostituendo il valore calcolato in precedenza si ottiene:

$$\frac{I_{L1}}{I_{S}} = \frac{G_1 (G_2 - A_I G_i)}{(G_i + G_2) (G_1 + G_2) - G_2 (G_2 - A_I G_i)} \approx -\frac{G_1}{G_2}$$

Ricaviamo ora il legame tra la tensione di ingresso e la corrente della sorgente sostituendo il valore relativo a V_{o^+} nell'equazione al nodo di ingresso:

$$I_{S} = V_{i} (G_{i} + G_{2}) - V_{o}^{+} G_{2} = V_{i} (G_{i} + G_{2}) - V_{i} G_{2} \left(\frac{G_{2} - A_{I} G_{i}}{G_{1} + G_{2}} \right)$$

$$I_{S} = V_{i} \left[\frac{(G_{i} + G_{2})(G_{1} + G_{2}) - G_{2}(G_{2} - A_{I}G_{i})}{G_{1} + G_{2}} \right] = V_{i} \left[\frac{G_{i}G_{1} + G_{i}G_{2} + G_{1}G_{2} + G_{2}^{2} - G_{2}^{2} + A_{I}G_{i}G_{2}}{G_{1} + G_{2}} \right]$$

La funzione di trasferimento tensione-corrente è quindi data da:

$$\frac{V_{i}}{I_{s}} = \frac{G_{1} + G_{2}}{G_{i} (G_{1} + G_{2}) + G_{1} G_{2} + A_{I} G_{i} G_{2}}$$

Poiché $I_i = V_i G_i$, la corrente sul carico I_{L2} è data da:

 $I_{L2} = A_I I_i = A_I V_i G_i$

La funzione di trasferimento tra la corrente si uscita e quella di sorgente è quindi data da:

$$\frac{I_{L2}}{I_{S}} = \left(\frac{V_{i}}{I_{S}}\right) A_{I} G_{i}$$

Sostituendo il valore del rapporto V_i/I_S prima calcolato si ha:

$$\frac{I_{L2}}{I_{S}} = \frac{A_{I} G_{i} (G_{1} + G_{2})}{G_{i} (G_{1} + G_{2}) + G_{1} G_{2} + A_{I} G_{i} G_{2}} \approx \frac{G_{1} + G_{2}}{G_{2}}$$

Consideriamo ora l'amplificatore operazionale di tensione (VOA) in configurazione invertente di figura 28 nel caso reale, cioè con $R_i < \infty$ e $A_V < \infty$.

Sommando le correnti al nodo di ingresso si ha:

$$G_1 (V_S - V_i) = G_i V_i + G_2 (V_i - V_o)$$

dalla quale riordinando si ottiene:

$$V_{S} G_{1} = V_{i} (G_{1} + G_{2} + G_{i}) - V_{o} G_{2}$$

Poiché $V_0 = A_V V_i$, sostituendo si ha:

$$V_{S} G_{1} = V_{i} (G_{1} + G_{2} + G_{i} - A_{V} G_{2})$$

Quindi la funzione di trasferimento tra la tensione di ingresso e quella del generatore sorgente è data da:

$$\frac{V_{i}}{V_{S}} = \frac{G_{1}}{G_{1} + G_{2} + G_{i} - A_{V}G_{2}}$$

La funzione di trasferimento tra la tensione di uscita e quella del generatore si sorgente, invece, è data da:

$$\frac{V_o}{V_S} = A_V \frac{V_i}{V_S} = \frac{A_V G_1}{G_1 + G_2 + G_i - A_V G_2}$$

Se $R_i \rightarrow \infty$, cioè $G_i = 0$, la relazione precedente può essere riscritta nel seguente modo:

$$\frac{V_{o}}{V_{S}} = \frac{-A_{V}G_{1}}{A_{V}G_{2}\left(1 - \frac{G_{1} + G_{2}}{A_{V}G_{2}}\right)} = -\frac{R_{2}}{R_{1}} \frac{1}{1 - \left(\frac{R_{1} + R_{2}}{R_{1}}\right)\left(\frac{1}{A_{V}}\right)}$$

Consideriamo una funzione di trasferimento ad un polo:

$$A_{V}(s) = \frac{A_{V0}}{1 + \frac{s}{\omega_{0}}} \approx \frac{A_{V0} \,\omega_{0}}{s} = \frac{\omega_{u}}{s}$$

dove ω_u è la frequenza di attraversamento¹ dell'amplificatore. Sostituendo nella funzione di trasferimento ingresso-uscita si ottiene:

$$\frac{V_{o}}{V_{S}} = -\frac{R_{2}}{R_{1}} \frac{1}{1 - \left(\frac{R_{1} + R_{2}}{R_{1}}\right)\left(\frac{s}{\omega_{u}}\right)}$$

Dalla relazione precedente si ha che il guadagno in bassa frequenza e la banda passante sono dati da:

$$G = \frac{R_2}{R_1}$$

$$BW = \omega_u \frac{R_1}{R_1 + R_2} = \frac{\omega_u}{1 + G}$$

Infine il prodotto guadagno-banda è dato da:

$$GBW = \omega_u \frac{G}{1+G} \approx \omega_u$$

che risulta essere pressoché costante.

Consideriamo ora lo stesso circuito nel caso di un amplificatore operazionale di corrente mostrato nella figura 29.

Sommando le correnti al nodo di ingresso si ha:

$$G_1 (V_S - V_i) = G_i V_i + G_2 (V_i - V_o)$$

dalla quale riordinando si ottiene:

$$V_{S} G_{1} = V_{i} (G_{1} + G_{2} + G_{i}) - V_{o} G_{2}$$

Al nodo di uscita si ha invece:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

¹ Frequenza alla quale il guadagno di corrente di corto circuito è unitario.

$$G_2 (V_i - V_o) = G_L V_o + A_I I_i$$

Essendo $I_i = G_i V_i$, la precedente relazione può essere riscritta nel seguente modo:

$$G_2 (V_i - V_o) = G_L V_o + A_I G_i V_i$$

dalla quale riordinando si ha:

$$V_{i} (G_{2} - A_{I} G_{i}) = V_{o} (G_{2} + G_{L})$$
$$V_{i} = V_{o} \left(\frac{G_{2} + G_{L}}{G_{2} - A_{I} G_{i}} \right)$$

Sostituendo questo valore nell'espressione relativa al nodo di ingresso, se G_i>>G₁,G₂, si ha:

$$V_{S} G_{1} = V_{i} (G_{1} + G_{2} + G_{i}) - V_{o} G_{2} \approx V_{o} \left[G_{i} \left(\frac{G_{2} + G_{L}}{-A_{I} G_{i}} \right) - G_{2} \right]$$
$$V_{S} G_{1} = -V_{o} \left[\frac{G_{i} (G_{2} + G_{L}) + A_{I} G_{2} G_{i}}{A_{I} G_{i}} \right]$$

La funzione di trasferimento ingresso-uscita è quindi data da:

$$\frac{V_{o}}{V_{S}} = \frac{-A_{I}G_{1}G_{i}}{G_{i}(G_{2}+G_{L})+A_{I}G_{2}G_{i}} = -\frac{G_{1}}{G_{2}}\frac{1}{1+\left[\frac{G_{i}(G_{2}+G_{L})}{A_{I}G_{2}G_{i}}\right]}$$

$$\frac{V_{o}}{V_{S}} = -\frac{R_{2}}{R_{1}} \frac{1}{1 + \left(\frac{R_{L} + R_{2}}{R_{L}}\right)\left(\frac{1}{A_{I}}\right)}$$

Consideriamo anche in questo caso un guadagno di corrente ad un polo:

$$A_{I}(s) = \frac{A_{I0}}{1 + \frac{s}{\omega_{0}}} \approx \frac{A_{I0} \omega_{0}}{s} = \frac{\omega_{u}}{s}$$

Sostituendo nella funzione di trasferimento calcolata prima si ottiene:

$$\frac{V_{o}}{V_{S}} = -\frac{R_{2}}{R_{1}} \frac{1}{1 - \left(\frac{R_{L} + R_{2}}{R_{L}}\right)\left(\frac{s}{\omega_{u}}\right)}$$

Definiamo anche in questo caso il guadagno in bassa frequenza e la larghezza di banda:

$$G = \frac{R_2}{R_1}$$

$$BW = \omega_u \ \frac{R_L}{R_L + R_2}$$

Quindi il prodotto guadagno-banda dell'amplificatore è dato da:

$$GBW = \omega_{u} \left(\frac{R_{2}}{R_{1}} \right) \left(\frac{R_{L}}{R_{L} + R_{2}} \right)$$

Come si può vedere in questo caso la banda passante, nonché il fattore GBW dipendono dalla resistenza di carico a differenza di quanto avveniva nel caso del VOA dove il prodotto guadagno-banda era pressoché costante e indipendente dal carico.

Nella figura 30 infine, viene riportata la struttura interna a blocchi di un COA dove il primo stadio rappresenta un buffer di corrente, il secondo stadio un amplificatore di tensione con relativa capacità di compensazione e l'ultimo stadio una cella differenziale con carico attivo.

Il guadagno d'anello è approssimativamente: LG = Z_o A_V g_m.

Analisi della cella differenziale BJT standard

Consideriamo il circuito di figura 31 e lavoriamo nell'ipotesi in cui le variazioni nel punto A siano trascurabili (piccole escursioni del segnale d'ingresso).

figura 31 – Stadio differenziale a BJT con carico attivo

Nel punto A si ottiene:

$$V_{EE}(0) = V_{CM} - V_{BE} | (I_{EE}/2) = V_{BIAS}$$

Sotto queste ipotesi, andando ad analizzare il circuito relativo al transistor 2 e al transistor 4 si ottiene lo schema di figura 32.

figura 32 - Mezzo circuito differenziale

Dal modello di Ebers-Moll si ottiene:

$$I_{C1} = I_{Sn} \exp\left(\frac{V_{BE1}}{V_T}\right) \left(1 + \frac{V_{CE1}}{V_{AN}}\right) \qquad I_{C2} = I_{Sn} \exp\left(\frac{V_{BE2}}{V_T}\right) \left(1 + \frac{V_{CE2}}{V_{AN}}\right)$$

Risolvendo rispetto a V_{BE1} e V_{BE2} si ottiene:

$$V_{BE1} = V_T \ln \left(\frac{I_{C1}}{I_{sn} \left(1 + \frac{V_{CE1}}{V_{AN}} \right)} \right) \qquad V_{BE2} = V_T \ln \left(\frac{I_{C2}}{I_{sn} \left(1 + \frac{V_{CE2}}{V_{AN}} \right)} \right)$$

La tensione differenziale di ingresso è data da:

$$V_{id} = V_{BE1} - V_{BE2} = V_T \left\{ ln \left(\frac{I_{C1}}{I_{sn} \left(1 + \frac{V_{CE1}}{V_{AN}} \right)} \right) - ln \left(\frac{I_{C2}}{I_{sn} \left(1 + \frac{V_{CE2}}{V_{AN}} \right)} \right) \right\}$$

Applicando le proprietà dei logaritmi si ottiene:

(*)
$$V_{id} = V_T ln \left[\frac{I_{C1} \left(1 + \frac{V_{CE2}}{V_{AN}} \right)}{I_{C2} \left(1 + \frac{V_{CE1}}{V_{AN}} \right)} \right]$$

Per quanto riguarda le correnti di collettore dei transistor Q3 e Q4 si ha:

$$I_{C3} = I_{Sp} \exp\left(\frac{V_{BE3}}{V_{T}}\right) \left(1 + \frac{V_{EC3}}{V_{AP}}\right) \quad I_{C4} = I_{Sp} \exp\left(\frac{V_{BE4}}{V_{T}}\right) \left(1 + \frac{V_{EC4}}{V_{AP}}\right)$$

Supponendo che il β dei transistor Q3 e Q4 sia molto alto ($\beta \rightarrow \infty$) è possibile trascurare le correnti di base degli stessi e, poiché I_{Sp3} = I_{Sp4} si ha:

$$\frac{I_{C3}}{I_{C4}} = \frac{\left(1 + \frac{V_{EC3}}{V_{AP}}\right)}{\left(1 + \frac{V_{EC4}}{V_{AP}}\right)} = \frac{I_{C1}}{I_{C2}}$$

Sostituendo le relazione precedente nella (*) si ottiene:

$$V_{id} = V_T \ln \left[\frac{\left(1 + \frac{V_{EC3}}{V_{AP}}\right) \left(1 + \frac{V_{CE2}}{V_{AN}}\right)}{\left(1 + \frac{V_{EC4}}{V_{AP}}\right) \left(1 + \frac{V_{CE1}}{V_{AN}}\right)} \right]$$
$$V_{CE1} = V_{CC} - V_{BEON3} - (V_{BEON1}) \approx V_{CC}$$
$$V_{CE2} = V_{OUT} + V_{BEON2}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

V_{EC3} = V_{BEON3} (tensione di polarizzazione del "diodo")

$$V_{EC4} = V_{CC} - V_{OUT}$$

Sostituendo i valori appena calcolati nell'espressione precedente si ha:

$$V_{id} = V_{T} \ln \left[\frac{\left(1 + \frac{V_{BEON}}{V_{AP}}\right) \left(1 + \frac{V_{OUT} + V_{BEON}}{V_{AN}}\right)}{\left(1 + \frac{V_{CC} - V_{OUT}}{V_{AP}}\right) \left(1 + \frac{V_{CC}}{V_{AN}}\right)} \right]$$

che possiamo scrivere anche come:

$$V_{id} = V_{T} \left\{ ln \left(\frac{\left(1 + \frac{V_{OUT} + V_{BEON}}{V_{AN}} \right)}{\left(1 + \frac{V_{CC}}{V_{AN}} \right)} \right) - ln \left(\frac{\left(1 + \frac{V_{CC} - V_{OUT}}{V_{AP}} \right)}{\left(1 + \frac{V_{BEON}}{V_{AP}} \right)} \right) \right\}$$

Assumiamo ora la seguente approssimazione:

$$\frac{1+x}{1+y} \xrightarrow{x,y \text{ piccoli rispetto a 1}} (1+x) (1-y) = 1+x-y-x$$

Ponendo dapprima:

$$\frac{1+x}{1+y} = \frac{\left(1 + \frac{V_{OUT} + V_{BEON}}{V_{AN}}\right)}{\left(1 + \frac{V_{CC}}{V_{AN}}\right)}$$

E in un secondo momento:

$$\frac{1+x}{1+y} = \frac{\left(1 + \frac{V_{CC} - V_{OUT}}{V_{AP}}\right)}{\left(1 + \frac{V_{BEON}}{V_{AP}}\right)}$$

si ottiene per V_{id}, la seguente relazione:

$$V_{id} = V_T \left\{ \ln \left(1 + \frac{V_{OUT} + V_{BEON} - V_{CC}}{V_{AN}} \right) - \ln \left(1 + \frac{V_{CC} - V_{OUT} - V_{BEON}}{V_{AP}} \right) \right\}$$

e applicando le proprietà dei logaritmi, diventa:

$$V_{id} = V_{T} \ln \left[\frac{\left(1 + \frac{V_{OUT} + V_{BEON} - V_{CC}}{V_{AN}}\right)}{\left(1 + \frac{V_{CC} - V_{OUT} - V_{BEON}}{V_{AP}}\right)} \right] = V_{T} \ln \left[\frac{\left(1 + \frac{V_{OUT} + V_{BEON} - V_{CC}}{V_{AN}}\right)}{\left(1 - \frac{V_{OUT} + V_{BEON} - V_{CC}}{V_{AP}}\right)} \right]$$

Eliminando il logaritmo e passando all'esponenziale, si ottiene:

$$\exp\left(\frac{V_{id}}{V_{T}}\right)\left(1-\frac{V_{OUT}+V_{BEON}-V_{CC}}{V_{AP}}\right) = \left(1+\frac{V_{OUT}+V_{BEON}-V_{CC}}{V_{AN}}\right)$$

e raggruppando i fattori comuni si ha:

$$(V_{OUT}+V_{BEON}-V_{CC})\left\{\frac{1}{V_{AN}}+\exp\left(\frac{V_{id}}{V_{T}}\right)\frac{1}{V_{AP}}\right\}=\exp\left(\frac{V_{id}}{V_{T}}\right)-1$$

In definitiva la tensione V_{OUT} sarà data dalla seguente espressione:

$$V_{OUT} = V_{CC} - V_{BEON} + \frac{\exp\left(\frac{V_{id}}{V_{T}}\right) - 1}{\frac{1}{V_{AN}} + \exp\left(\frac{V_{id}}{V_{T}}\right)\frac{1}{V_{AP}}}$$

Trascurando il termine $V_{CC} - V_{BEON}$, che verranno aggiunti alla fine a meno di un fattore moltiplicativo ϵ , e moltiplicando per la quantità:

$$\exp\left(-\frac{V_{id}}{2 V_T}\right) V_{AN} V_{AP}$$

si ottiene per la tensione di uscita, la seguente espressione:

$$V_{OUT} = \frac{V_{AN} V_{AP} \left[\exp \left(\frac{V_{id}}{2 V_{T}} \right) - \exp \left(- \frac{V_{id}}{2 V_{T}} \right) \right]}{V_{AP} \exp \left(- \frac{V_{id}}{2 V_{T}} \right) + V_{AN} \exp \left(\frac{V_{id}}{2 V_{T}} \right)}$$

Utilizziamo le seguenti relazioni:

$$V_{AM} = \frac{V_{AN} + V_{AP}}{2} \quad V_{AD} = \frac{V_{AN} - V_{AP}}{2}$$

risolvendo otteniamo:

$$V_{AN} = V_{AM} + V_{AD}$$
; $V_{AP} = V_{AM} - V_{AD}$

Prendiamo in considerazione solo il denominatore dell'espressione di V_{OUT} ed effettuiamo le sostituzioni. Si ottiene:

$$D = (V_{AM} - V_{AD}) \exp\left(-\frac{V_{id}}{2V_{T}}\right) + (V_{AM} + V_{AD}) \exp\left(\frac{V_{id}}{2V_{T}}\right) =$$
$$= V_{AM} \left[\exp\left(-\frac{V_{id}}{2V_{T}}\right) + \exp\left(\frac{V_{id}}{2V_{T}}\right) \right] + V_{AD} \left[\exp\left(\frac{V_{id}}{2V_{T}}\right) - \exp\left(-\frac{V_{id}}{2V_{T}}\right) \right]$$
$$\sum_{\Delta} \Delta$$

Sostituendo nell'espressione di V_{OUT}, si ottiene:

$$V_{OUT} = \frac{V_{AN} V_{AP} \left[\exp\left(\frac{V_{id}}{2 V_{T}}\right) - \exp\left(-\frac{V_{id}}{2 V_{T}}\right) \right]}{\left(\frac{V_{AN} + V_{AP}}{2}\right) \Sigma + \left(\frac{V_{AN} - V_{AP}}{2}\right) \Delta} = \frac{\left[\exp\left(\frac{V_{id}}{2 V_{T}}\right) - \exp\left(-\frac{V_{id}}{2 V_{T}}\right) \right]}{\left(\frac{V_{AN} + V_{AP}}{2}\right) \Sigma + \left(\frac{V_{AN} - V_{AP}}{2}\right) \left(\frac{\Delta}{\Sigma}\right)} = \frac{V_{AN} V_{AP}}{\left(\frac{V_{AN} + V_{AP}}{2}\right) \Sigma + \left(\frac{V_{AN} - V_{AP}}{2}\right) \left(\frac{\Delta}{\Sigma}\right)} = \frac{V_{AN} V_{AP} \operatorname{tgh}\left(\frac{V_{id}}{2 V_{T}}\right)}{\left(\frac{V_{AN} + V_{AP}}{2}\right) + \left(\frac{V_{AN} - V_{AP}}{2}\right) \operatorname{tgh}\left(\frac{V_{id}}{2 V_{T}}\right)} = \frac{V_{AN} V_{AP} \operatorname{tgh}\left(\frac{V_{id}}{2 V_{T}}\right)}{\left(\frac{V_{AN} + V_{AP}}{2}\right) + \left(\frac{V_{AN} - V_{AP}}{2}\right) \operatorname{tgh}\left(\frac{V_{id}}{2 V_{T}}\right)} = \frac{V_{AN} V_{AP} \operatorname{tgh}\left(\frac{V_{AP}}{2 V_{T}}\right)}{\left(\frac{V_{AN} + V_{AP}}{2}\right) + \left(\frac{V_{AN} - V_{AP}}{2}\right) \operatorname{tgh}\left(\frac{V_{id}}{2 V_{T}}\right)} = \frac{V_{AN} V_{AP} \operatorname{tgh}\left(\frac{V_{AP}}{2 V_{T}}\right)}{V_{AN} + V_{AP} + V_{AP}} + \frac{V_{AN} - V_{AP}}{2} + \frac{V_{AN} -$$

Moltiplicando e dividendo il secondo termine al denominatore per V_{AN} + V_{AP} si ottiene:

$$= \frac{2 V_{AN} V_{AP} \operatorname{tgh} \left(\frac{V_{id}}{2 V_{T}} \right)}{\left(V_{AN} + V_{AP} \right) \left[\underbrace{1 + \left(\frac{V_{AN} - V_{AP}}{-V_{AN} + \overline{V_{AP}}} \right) \operatorname{tgh} \left(\frac{-V_{id}}{2 V_{T}} \right) \right]}_{\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow} + (V_{CC} - V_{BEON}) \varepsilon$$
trascurabile

dove il termine ($V_{CC} - V_{BEON}$) ε , è il termine che avevo trascurato inizialmente.

$$V_{OUT} = (V_{CC} - V_{BEON}) \epsilon + \frac{2 V_{AN} V_{AP}}{(V_{AN} + V_{AP})} tgh\left(\frac{V_{id}}{2 V_T}\right)$$

La dinamica di uscita dello stadio sarà quindi:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" 30

Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

Errori di offset di ingresso della cella differenziale BJT

Gli errori di offset nella cella differenziale a transistor bipolari sono dovuti essenzialmente a differenze nella larghezza di base dei dispositivi, nel livello di drogaggio della base e del collettore, le differenze nell'area effettiva di emettitore e nei valori delle resistenze di carico. In generale, la corrente continua di base è piccola per cui è possibile trascurare la caduta di tensione su r_b è quindi r_b risulta trascurabile. Gli errori di offset possono essere rappresentati mediante un generatore equivalente di tensione di offset e un generatore equivalente di corrente di offset collegati come nella figura 34.

figura 34 - Cella differenziale BJT con carico resistivo e sorgenti di offset

La tensione di offset di ingresso Vos equivale al valore della tensione differenziale di ingresso V_{id} che deve essere applicata in ingresso per portare a zero la tensione differenziale di uscita. Supponendo di essere in queste condizioni, sommando le tensioni lungo la maglia di ingresso² si ha:

$$V_{BE1} - V_{BE2} - V_{OS} = 0$$

$$I_{C} = I_{S} \exp\left(\frac{V_{BE}}{V_{T}}\right) \left(1 + \frac{V_{CE}}{V_{A}}\right) \approx I_{S} \exp\left(\frac{V_{BE}}{V_{T}}\right)$$

² Trascuriamo per il momento il generatore di corrente di offset di ingresso. Michele Marino - mmelectronics@tim.it 32

Università degli studi di Roma "La Sapienza"

$$V_{BE1} = V_T \ln \left(\frac{I_{C1}}{I_{S1}} \right)$$
$$V_{BE2} = V_T \ln \left(\frac{I_{C2}}{I_{S2}} \right)$$

La tensione di offset è quindi data da:

$$V_{OS} = V_T \ln \left(\frac{I_{C1}}{I_{S1}} \right) - V_T \ln \left(\frac{I_{C2}}{I_{S2}} \right) = V_T \ln \left(\frac{I_{C1}}{I_{C2}} - \frac{I_{S2}}{I_{S1}} \right)$$

Affinché la tensione differenziale di uscita sia nulla deve essere:

$$I_{C1} R_{C1} = I_{C2} R_{C2}$$

Quindi per la tensione di offset si ha:

$$V_{\rm OS} = V_{\rm T} \ln \left(\frac{R_{\rm C2}}{R_{\rm C1}} \frac{I_{\rm S2}}{I_{\rm S1}} \right)$$

Dalla relazione precedente si nota il legame tra la tensione di offset di ingresso e le differenze tra i parametri dei dispositivi attivi e le resistenze carico R_C.

Eseguiamo ora un'analisi approssimata della tensione di offset di ingresso nella coppia differenziale BJT definendo i parametri "medi" e di "simmetria" come segue:

$$\Delta X = X_1 - X_2$$
$$X = \frac{X_1 + X_2}{X_1 - X_2}$$

2

Risolvendo si ha:

$$X_1 = X + \frac{\Delta X}{2}$$
$$X_2 = X - \frac{\Delta X}{2}$$

Sostituendo al posto della X i valori dei parametri di sistema si ha:

$$\Delta R_{\rm C} = R_{\rm C1} - R_{\rm C2}$$
$$R_{\rm C} = \frac{R_{\rm C1} + R_{\rm C2}}{2}$$

$$R_{C1} = R_{C} + \frac{\Delta R_{C}}{2}$$

$$R_{C2} = R_{C} - \frac{\Delta R_{C}}{2}$$

$$\Delta I_{S} = I_{S1} - I_{S2}$$

$$I_{S} = \frac{I_{S1} + I_{S2}}{2}$$

$$I_{S1} = I_{S} + \frac{\Delta I_{S}}{2}$$

$$I_{S2} = I_{S} - \frac{\Delta I_{S}}{2}$$

Sostituendo nella relazione relativa alla tensione di offset prima calcolata, si ha:

$$V_{OS} = V_{T} \ln \left[\left(\frac{R_{C} - \frac{\Delta R_{C}}{2}}{R_{C} + \frac{\Delta R_{C}}{2}} \right) \left(\frac{I_{S} - \frac{\Delta I_{S}}{2}}{I_{S} + \frac{\Delta I_{S}}{2}} \right) \right]$$

Che è anche uguale alla seguente:

$$V_{\rm OS} = V_{\rm T} \ln \left[\left(\frac{1 - \frac{\Delta R_{\rm C}}{2 R_{\rm C}}}{1 + \frac{\Delta R_{\rm C}}{2 R_{\rm C}}} \right) \left(\frac{1 - \frac{\Delta I_{\rm S}}{2 I_{\rm S}}}{1 + \frac{\Delta I_{\rm S}}{2 I_{\rm S}}} \right) \right]$$

Se $\Delta R_C << R_C e \Delta I_S << I_S$, possiamo utilizzare la seguente approssimazione:

$$\frac{1-x}{1+y} \xrightarrow{x,y <<1} 1-x-y+xy$$

Quindi la tensione di offset di ingresso diventa:

$$V_{\rm OS} = V_{\rm T} \ln \left[\left(1 - \frac{\Delta R_{\rm C}}{R_{\rm C}} \right) \left(1 - \frac{\Delta I_{\rm S}}{I_{\rm S}} \right) \right]$$

Utilizzando lo sviluppo in serie di Taylor della funzione logaritmo arrestato e trascurando i termini di ordine superiore, si ha:

$$\ln (1 + x) = x - \frac{x^2}{2} + \dots$$
$$V_{OS} \approx V_T \left(-\frac{\Delta R_C}{R_C} - \frac{\Delta I_S}{I_S} \right)$$

Spesso per portare a zero la tensione di offset si procede con una regolazione manuale mediante un potenziometro esterno, ma questo non porta ad una soluzione definitiva in quanto la tensione di offset varia con la temperatura, essendo soggetta a deriva termica. Quindi la deriva e l'offset, per la coppia differenziale a transistor bipolari, sono proporzionali tra loro.

La corrente di offset di ingresso è uguale alla differenza tra le due correnti di base dei transistor di ingresso:

$$I_{OS} = I_{B1} - I_{B2} = \frac{I_{C1}}{\beta_{F1}} - \frac{I_{C2}}{\beta_{F2}}$$

Definiamo nuovamente i parametri "medi" e di "simmetria" come prima:

$$I_{C1} = I_C + \frac{\Delta I_C}{2}$$
$$I_{C2} = I_C - \frac{\Delta I_C}{2}$$
$$\beta_{F1} = \beta_F + \frac{\Delta \beta_F}{2}$$
$$\beta_{F2} = \beta_F - \frac{\Delta \beta_F}{2}$$

La corrente di offset di ingresso è quindi data da:

$$I_{\rm OS} = \left(\frac{I_{\rm C} + \frac{\Delta I_{\rm C}}{2}}{\beta_{\rm F} + \frac{\Delta \beta_{\rm F}}{2}} - \frac{I_{\rm C} - \frac{\Delta I_{\rm C}}{2}}{\beta_{\rm F} - \frac{\Delta \beta_{\rm F}}{2}}\right)$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

$$I_{OS} = \frac{I_C}{\beta_F} \left(\frac{1 + \frac{\Delta I_C}{2 I_C}}{1 + \frac{\Delta \beta_F}{2 \beta_F}} - \frac{1 - \frac{\Delta I_C}{2 I_C}}{1 - \frac{\Delta \beta_F}{2 \beta_F}} \right)$$

Se supponiamo $\Delta I_C << I_C \ e \ \Delta \beta_F << \beta_F$, utilizzando anche in questo caso le approssimazioni illustrate precedentemente e trascurando i termini di ordine , si ha:

$$\frac{1+x}{1+y} \xrightarrow{x,y < <1} 1+x-y-xy$$

$$\frac{1-x}{1-y} \xrightarrow{x,y <<1} 1-x+y-xy$$

$$I_{OS} \approx \frac{I_C}{\beta_F} \left[1 + \frac{\Delta I_C}{2 I_C} - \frac{\Delta \beta_F}{2 \beta_F} - \left(1 - \frac{\Delta I_C}{2 I_C} + \frac{\Delta \beta_F}{2 \beta_F} \right) \right]$$

La corrente di offset di ingresso è data da:

$$I_{\rm OS} = \frac{I_{\rm C}}{\beta_{\rm F}} \left(\frac{\Delta I_{\rm C}}{I_{\rm C}} - \frac{\Delta \beta_{\rm F}}{\beta_{\rm F}} \right)$$

La relazione tra le correnti di collettore e le resistenze R_C presentata in precedenza è la seguente:

$$\frac{\Delta I_{\rm C}}{I_{\rm C}} = -\frac{\Delta R_{\rm C}}{R_{\rm C}}$$

In definitiva la corrente di offset di ingresso è data da:

$$I_{\rm OS} = - \frac{I_{\rm C}}{\beta_{\rm F}} \left(\frac{\Delta R_{\rm C}}{R_{\rm C}} + \frac{\Delta \beta_{\rm F}}{\beta_{\rm F}} \right)$$

Consideriamo ora la coppia differenziale BJT con carico attivo di figura 35. La tensione di offset di ingresso è dovuta ad asimmetrie nei transistor di ingresso e nei transistor di carico e dalla corrente di base dei dispositivi di carico.

Partiamo dall'ipotesi in cui la tensione differenziale di ingresso sia stata regolata in modo da portare la tensione di uscita, supponendo i dispositivi identici e gli ingressi a massa, al valore $V_{CC} - V_{BE(on)}$. Per questo valore della tensione di uscita si ha:

$$V_{CE3} = V_{CE4}$$
$$V_{CE1} = V_{CE2}$$

figura 35 - Cella differenziale BJT con carico attivo

Le correnti di collettore di Q3 e Q4 sono date da:

$$I_{C3} = I_{S3} \exp\left(\frac{V_{BE3}}{V_{T}}\right) \left(1 + \frac{V_{CE3}}{V_{AP}}\right)$$
$$I_{C4} = I_{S4} \exp\left(\frac{V_{BE4}}{V_{T}}\right) \left(1 + \frac{V_{CE4}}{V_{AP}}\right)$$

Quindi la corrente I_{C4} è legata alla corrente I_{C3} dalla seguente relazione:

$$I_{C4} = I_{C3} \left(\frac{I_{S4}}{I_{S3}} \right)$$

Poiché $I_{C2} = -I_{C4}$, si ha:

$$\mathbf{I}_{C2} = -\mathbf{I}_{C3} \left(\frac{\mathbf{I}_{S4}}{\mathbf{I}_{S3}} \right)$$

La corrente I_{C1} è data dalla corrente di collettore di Q3 più le corrente di base dei transistor Q3 e Q4:

$$I_{C1} = -I_{C3} \left[1 + \left(\frac{2}{\beta_F} \right) \right] = I_{C2} \left(\frac{I_{S3}}{I_{S4}} \right) \left[1 + \left(\frac{2}{\beta_F} \right) \right]$$

La tensione di offset di ingresso è data da:

$$V_{OS} = V_{BE1} - V_{BE2}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

$$V_{OS} = V_T \ln \left(\frac{I_{C1}}{I_{S1}} \right) - V_T \ln \left(\frac{I_{C2}}{I_{S2}} \right) = V_T \ln \left(\frac{I_{C1}}{I_{C2}} - \frac{I_{S2}}{I_{S1}} \right)$$

Sostituendo il valore di I_{C1} precedentemente calcolato si ha:

$$V_{OS} = V_T \ln \left[\frac{I_{S3}}{I_{S4}} - \frac{I_{S2}}{I_{S1}} \left(1 + \frac{2}{\beta_F} \right) \right]$$

Definiamo nuovamente i parametri "medi" e di "simmetria":

$$\Delta I_{SP} = I_{S3} - I_{S4}$$
$$I_{SP} = \frac{I_{S3} + I_{S4}}{2}$$
$$\Delta I_{SN} = I_{S1} - I_{S2}$$
$$I_{SN} = \frac{I_{S1} + I_{S2}}{2}$$

Se le asimmetrie sono piccole, la tensione di offset può essere approssimata con la relazione seguente:

$$V_{OS} \approx V_T \left(\frac{\Delta I_{SP}}{I_{SP}} - \frac{\Delta I_{SN}}{I_{SN}} + \frac{2}{\beta_F} \right)$$

Come si può vedere la cella differenziale con carico attivo presenta una tensione di offset di ingresso leggermente più alta rispetto alla cella differenziale con carico resistivo. Per ridurre l'effetto delle correnti di base sulla tensione di offset in genere si usa un dispositivo addizionale collegato come in figura 36.

figura 36 - Cella differenziale BJT con dispositivo addizionale per la riduzione dell'offset

Tensione di offset di ingresso nella cella differenziale MOS

La tensione di offset di ingresso per una coppia differenziale a transistor MOSFET può essere calcolata dallo schema di figura 37.

figura 37 - Cella differenziale MOS con carico resistivo e sorgente di offset

L'equazione della maglia di ingresso è:

$$V_{OS} = V_{GS1} - V_{GS2}$$

Le correnti di drain sono date da:

$$I_{D1} = K_1 (V_{GS1} - V_{t1})^2 (1 + \lambda V_{DS1}) \approx K (V_{GS1} - V_{t1})^2$$
$$I_{D2} = K_2 (V_{GS2} - V_{t2})^2 (1 + \lambda V_{DS2}) \approx K (V_{GS2} - V_{t2})^2$$

$$K_1 = \frac{\mu_n \varepsilon_{ox}}{2 t_{ox}} \frac{W_1}{L_1}$$

$$K_2 = \frac{\mu_n \epsilon_{ox}}{2 t_{ox}} \frac{W_2}{L_2}$$

Dalle precedenti si ricavano le tensioni V_{GS1} e V_{GS2} per cui la tensione di offset è data da:

$$V_{GS1} = V_{t1} + \sqrt{\frac{2 I_{D1}}{\mu_n C_{ox} (W/L)_1}}$$
$$V_{GS2} = V_{t2} + \sqrt{\frac{2 I_{D2}}{\mu_n C_{ox} (W/L)_2}}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

Definiamo anche in questo caso i parametri "medi" e di "simmetria":

$$I_{D1} = I_D + \frac{\Delta I_D}{2}$$

$$I_{D2} = I_D - \frac{\Delta I_D}{2}$$

$$(W/L)_1 = (W/L) + \Delta(W/L)$$

$$(W/L)_2 = (W/L) - \Delta(W/L)$$

$$V_{t1} = V_t + \frac{\Delta V_t}{2}$$

$$V_{t2} = V_t - \frac{\Delta V_t}{2}$$

$$R_{D1} = R_D + \frac{\Delta R_D}{2}$$

$$R_{D2} = R_D - \frac{\Delta R_D}{2}$$

La tensione di offset di ingresso è definita come la tensione differenziale di ingresso necessaria a portare a zero la tensione differenziale di uscita per cui, in queste condizioni, si ha:

$I_{D1} R_{D1} = I_{D2} R_{D2}$

Sostituendo questi valori, con le approssimazioni necessarie e trascurando i termini di ordine superiore, si ha:

$$V_{OS} = \Delta V_{T} + \left(\frac{(V_{GS} - V_{t})}{2}\right) \left[\left(-\frac{\Delta R_{D}}{R_{D}} \right) - \left(-\frac{\Delta (W/L)}{(W/L)} \right) \right]$$
$$V_{OV} = V_{GS} - V_{t}$$

Come si può vedere nella coppia differenziale BJT gli stessi termini di asimmetria venivano moltiplicati per V_T che è molto piccolo rispetto alla tensione di overdrive della coppia differenziale MOSFET. Per questo motivo la coppia differenziale MOSFET è caratterizzata da una tensione di offset di ingresso più elevata della coppia differenziale BJT, a parità di asimmetrie geometriche. Un altro elemento di asimmetria presente nella Michele Marino – mmelectronics@tim.it 40 Elettronica analogica con applicazioni Università degli studi di Roma "La Sapienza"

coppia differenziale MOSFET è dato dalla differenza nelle tensioni di soglia dei dispositivi che produce un offset costante indipendente dalla corrente di polarizzazione. D'altro canto in tecnologia MOS, essendo nulla la corrente di gate, non c'è il problema della corrente di offset di ingresso come invece avviene nel caso bipolare.

Analisi di un BJT in configurazione ad emettitore comune

La resistenza R_c rappresenta la resistenza di carico del collettore. Calcoliamo la caratteristica di trasferimento in continua dell'amplificatore al crescere della tensione di ingresso da zero nel verso positivo.

figura 38 - Stadio ad emettitore comune

Quando V_{in} è zero, Q1 è interdetto e non fluisce alcuna corrente di collettore. Al crescere della tensione di ingresso, il transistor entra nella regione attiva diretta e la corrente di collettore è data da:

$$\mathbf{I}_{\mathrm{C}} = \mathbf{I}_{\mathrm{S}} \exp\left(\frac{\mathbf{V}_{\mathrm{in}}}{\mathbf{V}_{\mathrm{T}}}\right)$$

La corrente di base è data da:

$$I_{B} = \frac{I_{C}}{\beta_{F}} = I_{S} \exp\left(\frac{V_{in}}{V_{T}}\right)$$

Mentre la tensione di uscita è:

$$V_{\rm O} = V_{\rm CC} - R_{\rm C} I_{\rm C} = V_{\rm CC} - R_{\rm C} I_{\rm S} \exp\left(\frac{V_{\rm in}}{V_{\rm T}}\right)$$

Eseguiamo ora un'analisi per piccoli segnali considerando il circuito a π di figura 39.

Trascurando ro si ottiene subito che:

$$G_m = g_m$$

La resistenza di ingresso è la resistenza equivalente di Thévenin vista guardando dentro l'ingresso:

$$R_i = r_{\pi}$$

La resistenza di uscita è la resistenza equivalente di Thévenin vista guardando dentro l'uscita con l'ingresso in corto circuito:

$$R_o = R_c / / r_o$$

La tensione di uscita è quindi data da:

$$v_o = -G_m v_1 R_o = -g_m (r_o / / R_c) v_1$$

e quindi il guadagno di tensione per piccoli segnali, tenendo presente che $v_1 = v_i$, è dato da:

$$a_{\rm v} = \frac{V_{\rm o}}{V_{\rm i}} = -g_{\rm m} \left(r_{\rm o} / /R_{\rm c} \right)$$

Per ottenere il guadagno di corrente è necessario porre in corto circuito l'uscita e calcolare il rapporto tra la corrente di uscita e quella di ingresso:

$$\mathbf{a}_{i} = \frac{\mathbf{i}_{o}}{\mathbf{i}_{i}} = \frac{\mathbf{G}_{m} \mathbf{v}_{i}}{\frac{\mathbf{v}_{i}}{\mathbf{R}_{i}}} = \mathbf{g}_{m} \mathbf{r}_{m} = \beta_{0}$$

Analisi di un FET in configurazione a source comune

Nella figura 40 – Stadio a source comune con carico resistivo è mostrato l'amplificatore a source comune con carico resistivo. Per $V_{in} = 0$ il FET è interdetto e quindi $I_D = 0$ e $V_o = V_{DD}$. Al crescere di V_{in} oltre la tensione di soglia V_t (*threshold voltage*) comincia a scorrere corrente nel drain e il FET si porta in zona attiva diretta (saturazione).

figura 40 - Stadio a source comune con carico resistivo

In queste condizioni, si ha:

$$V_{o} = V_{DD} - R_{D} I_{D}$$
$$I_{Dsat} = K (V_{GS} - V_{t})^{2} (1 + \lambda V_{DS})$$
$$K = \frac{\mu_{n} \epsilon_{ox}}{2 t_{ox}} \frac{W}{L}$$

La tensione di uscita $V_o = V_{DS}$ diminuisce al crescere di V_{in} fino a quando il FET entra in zona di triodo ($V_{DS} = V_{GS} - V_t$), regione nella quale la sua resistenza di uscita diventa piccola. Questo provoca una drastica riduzione del guadagno di tensione per piccoli segnali. Naturalmente la resistenza di ingresso di un FET è $R_i = \infty$ per cui il guadagno di corrente dello stadio è ipoteticamente infinito.

$$I_{Dtriodo} = K \left[2 \left(V_{GS} - V_t \right) V_{DS} - V_{DS}^2 \right]$$

$$K = \frac{\mu_n \epsilon_{ox}}{2 t_{ox}} \frac{W}{L}$$

Per il FET il guadagno di tensione in zona attiva diretta è molto minore di quello di un BJT per cui questa regione è molto più estesa rispetto al caso bipolare. Il circuito equivalente per piccolo segnali è topologicamente uguale a quello del BJT con $R_i = \infty$ per cui il guadagno di tensione massimo, con $R_D = \infty$, è dato da:

Michele Marino – mmelectronics@tim.it 43

a_v = - g_m r_o

Dalla precedente si nota che g_m varia come $\sqrt{I_D}$, mentre r_o varia come I_D^{-1} , per cui il guadagno di tensione massimo per lo stadio a source comune varia come $I_D^{-1/2}$ diversamente da quanto avviene per i BJT, in cui il guadagno massimo è indipendente dalla corrente.

Analisi di un BJT ad emettitore comune con degenerazione

La resistenza introdotta sull'emettitore ha diversi effetti, tra cui una riduzione della transconduttanza, un aumento della resistenza d'ingresso e della resistenza di uscita.

figura 41 – Stadio ad emettitore comune con degenerazione di emettitore

La resistenza R_E introduce una controreazione serie-serie in quanto la tensione ai suoi capi, che è proporzionale alla corrente di uscita, viene a sottrarsi direttamente alla tensione d'ingresso. Come noto, la reazione serie-serie consente di aumentare la resistenza d'ingresso e d'uscita di un fattore 1 + T, dove T rappresenta il guadagno d'anello dello stadio (T = a * f). Naturalmente tale aumento si ripercuote in una diminuzione dello stesso fattore per cui aumentano le resistenze, della transconduttanza dello stadio. Nella figura 42 viene riportato il circuito equivalente in bassa frequenza per piccoli segnali.

Osservando il circuito si ha che:

$$i_{e} = i_{b} + \beta_{0} i_{b} = i_{b} (1 + \beta_{0})$$

$$v_i = v_{\pi} + v_e = r_{\pi} i_b + R_E (1 + \beta_0) i_b = i_b [r_{\pi} + R_E (1 + \beta_0)]$$

La resistenza d'ingresso dello stadio è data da:

$$R_{i} = \frac{V_{i}}{i_{b}} = r_{\pi} + R_{E} \left(1 + \beta_{0}\right)$$

Considerando una r_{π} >>R_E, si può approssimare al valore seguente:

$$R_i = r_{\pi} + R_E + \beta_0 R_E \approx r_{\pi} (1 + g_m R_E)$$

Si vede quindi che resistenza d'ingresso aumenta di un fattore $(1 + g_m R_E)$. Per il calcolo della transconduttanza (trascurando r_o) si ha:

$$\mathbf{i}_{\mathrm{b}} = \frac{\mathbf{i}_{\mathrm{c}}}{\beta_0} = \frac{\mathbf{i}_{\mathrm{o}}}{\beta_0}$$

$$v_{i} = \frac{i_{o}}{\beta_{0}} \left[r_{\pi} + R_{E} \left(\beta_{0} + 1 \right) \right] = i_{o} \left[\frac{1}{g_{m}} + R_{E} \left(1 + \frac{1}{\beta_{0}} \right) \right]$$

Per cui la transconduttanza, considerando un β_0 >>1, è data da:

$$G_m = \frac{i_o}{v_i} \approx \frac{g_m}{1 + g_m R_E}$$

Si vede quindi che la transconduttanza diminuisce di un fattore $(1 + g_m R_E)$.

Per il calcolo della resistenza di uscita basta cortocircuitare l'ingresso collegando un generatore di corrente di prova i_x in uscita, come mostrato nella figura 43.

figura 43 - Circuito per il calcolo della resistenza d'uscita

Dall'analisi del circuito segue subito che:

$$v_{\pi} = v_{e} = -i_{x} (I_{\pi} / R_{E})$$

$$i_{ro} = i_{x} - g_{m} v_{\pi} = i_{x} + i_{x} g_{m} (r_{\pi} / R_{E}) = i_{x} [1 + g_{m} (r_{\pi} / R_{E})]$$

$$v_{x} = r_{o} i_{ro} - v_{\pi} = r_{o} i_{x} [1 + g_{m} (r_{\pi} / R_{E})] + i_{x} (r_{\pi} / R_{E}) = i_{x} \{(r_{\pi} / R_{E}) + r_{o} [1 + g_{m} (r_{\pi} / R_{E})]\}$$

(r //D)

$$R_{o} = \frac{V_{x}}{i_{x}} = (r_{\pi} / / R_{E}) + r_{o} [1 + g_{m} (r_{\pi} / / R_{E})]$$

Tenendo presente che il primo termine che compare nella relazione è molto più piccolo del secondo, si ha:

$$R_{o} \approx r_{o} \left(\frac{1 + g_{m} R_{E}}{1 + \frac{g_{m} R_{E}}{\beta_{0}}} \right)$$

Se $g_m R_E << \beta_0$, la resistenza di uscita è data da:

$$R_o \approx r_o (1 + g_m R_E)$$

E' evidente che la resistenza di uscita risulta essere aumentata di un fattore (1 + gm R_E).

Analisi di un FET a source comune con degenerazione

La configurazione con degenerazione di source negli stadi amplificatori a FET non è così ampliamente utilizzata quanto la degenerazione di emettitore nei circuiti bipolari. Questo perché la transconduttanza dei FET è molto minore di quella dei BJT per cui non è accettabile un'ulteriore riduzione. Inoltre l'effetto di aumentare la resistenza di ingresso tramite la degenerazione è di scarso interesse visto che, in un FET, $R_i = \infty$. D'altro canto l'aumento di R_0 è importante anche nei generatori di corrente a FET.

figura 44 - Stadio a source comune con degenerazione di source

Nella figura 45 viene riportato il circuito equivalente per piccoli segnali dello stadio a source comune con degenerazione di source.

figura 45 - Circuito equivalente in bassa frequenza per piccoli segnali

Dall'analisi del circuito segue immediatamente che:

$$V_i = V_{gs} + V_s$$

 $v_s = R_s i_d$

Quindi la corrente i_d è data da:

$$i_{d} = g_{m} (v_{i} - v_{s}) - g_{mb} v_{s} = g_{m} v_{i} - v_{s} (g_{m} + g_{mb}) = g_{m} v_{i} - R_{s} i_{d} (g_{m} + g_{mb})$$

$$i_{d} [1 + R_{s} (g_{m} + g_{mb})] = g_{m} v_{i}$$

In definitiva, la transconduttanza dello stadio è data da:

$$G_{\rm m} = \frac{i_{\rm d}}{v_{\rm i}} = \frac{g_{\rm m}}{1 + R_{\rm S} \left(g_{\rm m} + g_{\rm mb}\right)}$$

Nel caso bipolare il valore di G_m tende a $1/R_E$ per elevati valori di R_E e quindi la transconduttanza diventa indipendente dai parametri del dispositivo attivo a differenza di quanto avviene nello stadio a FET qui discusso.

La resistenza di ingresso si ottiene considerando il circuito di figura 46.

Dall'analisi del circuito si ha:

$$v_{gs} = v_{bs} = -v_s = -R_s i_x$$

$$i_{ro} = i_x - g_m v_{gs} - g_{mb} v_{bs} = i_x + g_m R_s i_x + g_{mb} R_s i_x = i_x [1 + R_s (g_m + g_{mb})]$$

La tensione v_x è data da:

$$v_x = r_o i_{ro} + v_s = r_o i_x [1 + R_s (g_m + g_{mb})] + R_s i_x = i_x \{r_o [1 + R_s (g_m + g_{mb})] + R_s\}$$

Quindi la resistenza di uscita è data da:

$$R_o = \frac{V_x}{i_x} = r_o [1 + R_s (g_m + g_{mb})] + R_s$$

Analisi di un BJT in configurazione a base comune

Come si può vedere il segnale di ingresso è applicato sull'emettitore mentre l'uscita viene prelevata sul collettore.

figura 47 - Stadio a base comune

Nella figura 48 viene riportato il modello ibrido a π per piccoli segnali.

figura 48 - Circuito equivalente per piccoli segnali dello stadio a base comune

Come si può vedere tale modello risulta scomodo per l'analisi in quanto il generatore controllato di corrente è connesso tra l'ingresso e l'uscita. Il comportamento del circuito non cambia se sostituiamo al singolo generatore di corrente una coppia di generatori di

corrente dello stesso valore di cui uno fluisce dal collettore alla base, mentre l'altro fluisce dalla base all'emettitore. Tale modifica è mostrata nella figura 49.

figura 49 - Circuito equivalente con generatore controllato di corrente sdoppiato

Come si può vedere dalla figura, ora il generatore di corrente che connette la base con l'emettitore è controllato dalla tensione che compare ai suoi stessi terminali e quindi può essere sostituito con una resistenza di valore $1/g_m$. Questa si trova in parallelo con r_{π} e insieme costituiscono la resistenza di emettitore r_e :

$$r_e = \frac{1}{g_m + \frac{1}{r_{\pi}}} = \frac{\alpha_o}{g_m}$$

Si ottiene il modello a T mostrato in figura 50.

figura 50 – Modello a T per lo stadio a base comune

Nel caso in cui si possano trascurare r_o , r_μ , r_b il modello per piccoli segnali in bassa frequenza, per lo stadio a base comune, si riduce a quello mostrato nella figura 51.

figura 51 – Circuito equivalente a T in bassa frequenza per piccoli segnali dello stadio a base comune

La resistenza di ingresso è data da:

 $R_i = r_e$

Rc

La resistenza di uscita (assumendo che ro sia molto grande rispetto a Rc) è data da:

$$R_0 =$$

Inoltre:

$$v_o = -g_m R_c v_1$$
$$v_1 = -v_i$$
$$v_o = g_m R_c v_i$$

e quindi il guadagno di tensione a circuito aperto è dato da:

$$a_v = g_m R_c$$

Collegando l'uscita in corto circuito si ha:

$$i_o = g_m V_1$$
$$V_1 = - V_i$$
$$V_i = - r_e i_i$$
$$i_o = g_m r_e i_i$$

Quindi il guadagno di corrente in corto circuito è dato da:

$$a_i = g_m \ r_e = G_m \ r_e = \alpha_0$$

Naturalmente quando R_c diviene abbastanza grande da essere comparabile con r_o , questa deve essere inserita nel modello per piccoli segnali al fine di valutare accuratamente la resistenza di uscita dell'amplificatore.

ingresso e uscita che è minore di uno. Quindi, nello stadio a base comune, la resistenza di ingresso è molto bassa, mentre la resistenza di uscita è molto alta. Un vantaggio di questa configurazione consiste nel fatto che la capacità collettore-base (C_{μ}) non causa controreazione ad alta frequenza tra uscita e ingresso come invece avviene nello stadio a emettitore comune.

Analisi di un FET in configurazione a gate comune

Nella figura 52 viene riportato lo stadio in configurazione a gate comune, mentre nella figura 53 viene riportato il circuito equivalente per piccoli segnali.

La corrente che scorre in ro, con l'uscita in corto circuito, è data da:

$$i_{ro} = \frac{-V_i}{r_o}$$

$$V_{gs} = V_{bs} = -V_i$$

Quindi in uscita si ha:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

 $i_o = i_{ro} + g_m v_{gs} + g_{mb} v_{bs} = i_{ro} + v_{gs} (g_m + g_{mb}) = i_{ro} - v_i (g_m + g_{mb})$

$$i_{o} = \frac{-v_{i}}{r_{o}} - v_{i} \left(g_{m} + g_{mb}\right) = -v_{i} \left(\frac{1}{r_{o}} + g_{m} + g_{mb}\right)$$

Se r_o>>1, la transconduttanza dello stadio è data da:

$$G_m = \frac{i_o}{v_i} = g_m + g_{mb}$$

Per il calcolo della resistenza di ingresso prendiamo in considerazione il circuito di figura 54 dov'è stato connesso in ingresso un generatore di tensione di prova v_x e l'uscita è stata cortocircuitata.

figura 54 - Circuito per il calcolo della resistenza di ingresso

Dall'analisi del circuito segue subito che:

$$i_x = i_{ro} + g_m v_{gs} + g_{mb} v_{bs} = i_{ro} + v_{gs} (g_m + g_{mb}) = i_{ro} - v_x (g_m + g_{mb})$$

$$i_{ro} = \frac{-V_x}{r_o}$$

$$i_x = \frac{-v_x}{r_o} - v_x (g_m + g_{mb}) = -v_x (\frac{1}{r_o} + g_m + g_{mb})$$

Se r_o>>1, la resistenza di ingresso è data da:

$$R_i = \frac{V_x}{i_x} = \frac{1}{g_m + g_{mb}}$$

Per il calcolo della resistenza di uscita, consideriamo il circuito di figura 55, dove l'ingresso è stato cortocircuitato, e in uscita è stato collegato un generatore di corrente di prova i_x.

Poiché $v_{gs} = v_{bs} = 0$, i generatori controllati di corrente sono dei circuiti aperti per cui la corrente di prova i_x circola nel parallelo costituito da r_o e R_D:

$$v_x = r_o / / R_D i_x$$

La resistenza di uscita è data da:

$$R_o = \frac{V_x}{i_x} = r_o / / R_D \approx R_D, \text{ per } (r_o >> R_D)$$

Analisi di un BJT in configurazione a collettore comune

In questo caso il segnale di ingresso è applicato sulla base mentre l'uscita viene prelevata dall'emettitore.

figura 56 - Stadio a collettore comune

Nella figura 57 è riportato il circuito in bassa frequenza per piccoli segnali. Come si può vedere il transistor non è unilaterale per cui la resistenza di ingresso dipende dalla resistenza di carico R_L e la resistenza di uscita dipende dalla resistenza sorgente R_s . Michele Marino – mmelectronics@tim.it 54 Elettronica analogica con applicazioni Università degli studi di Roma "La Sapienza" Prof. Alessandro Trifiletti

figura 57 - Circuito equivalente in bassa frequenza per piccoli segnali dello stadio a collettore comune

Sommando le correnti al nodo di uscita si ha:

$$\frac{\mathbf{v}_{s} - \mathbf{v}_{o}}{\mathbf{R}_{s} + \mathbf{r}_{\pi}} + \beta_{0} \left(\frac{\mathbf{v}_{s} - \mathbf{v}_{o}}{\mathbf{R}_{s} + \mathbf{r}_{\pi}} \right) - \frac{\mathbf{v}_{o}}{\mathbf{R}_{L}} = \mathbf{0}$$

Per cui il guadagno di tensione è dato da:

$$a_{v} = \frac{v_{o}}{v_{i}} = \frac{1}{1 + \frac{R_{s} + r_{\pi}}{(\beta_{0} + 1) R_{L}}}$$

che risulta essere inferiore all'unità se $\beta_0 R_L >> R_s + r_{\pi}$.

Per calcolare la resistenza d'ingresso dello stadio, rimuoviamo il generatore di segnale v_s e colleghiamo un generatore di corrente di prova i_x tra i terminali di ingresso come mostrato nella figura 58.

figura 58 – Circuito per il calcolo della resistenza d'ingresso

$$i_{0} = i_{x} + \beta_{0} i_{x}$$
$$v_{x} = i_{x} r_{\pi} + R_{L} (i_{x} + \beta_{0} i_{x})$$
$$R_{i} = \frac{v_{x}}{i_{x}} = r_{\pi} + R_{L} (\beta_{0} + 1)$$

Per il calcolo della resistenza di uscita basta eliminare la resistenza di carico R_L , porre in corto circuito l'ingresso e collegare un generatore di tensione di prova v_x in uscita, come mostrato in figura 59.

figura 59 - Circuito per il calcolo della resistenza d'uscita

Dall'analisi del circuito segue immediatamente che:

$$v_i = -v_x \left(\frac{r_{\pi}}{R_s + r_{\pi}} \right)$$

La corrente totale di uscita è data da:

$$i_{x} = \frac{V_{x}}{R_{s} + r_{\pi}} + g_{m} V_{x} \left(\frac{r_{\pi}}{R_{s} + r_{\pi}}\right)$$

Quindi la resistenza di uscita è data da:

$$R_o = \frac{V_x}{i_x} = \frac{r_{\pi} + R_s}{1 + \beta_0} \approx \left(\frac{1}{g_m} + \frac{R_s}{1 + \beta_0}\right)$$

In definitiva l'inseguitore d'emettitore è caratterizzato da un'elevata resistenza d'ingresso, bassa resistenza di uscita e guadagno di tensione prossimo a uno ed è quindi spesso utilizzato come trasformatore d'impedenza, per evitare che una sorgente di segnale venga caricata dalla bassa impedenza d'ingresso di uno stadio successivo.

Analisi di un FET in configurazione a drain comune

Nella figura 60 viene riportato lo stadio a drain comune con il segnale di ingresso applicato sul gate e il segnale di uscita prelevato dal source, mentre nella figura 61 viene riportato il circuito a bassa frequenza per piccoli segnali.

figura 60 - Stadio a drain comune (inseguitore di source)

Dall'analisi del circuito segue subito che:

$$V_i = V_{gs} + V_o$$

Sommando le correnti al nodo di source si ha:

$$g_{\rm m} v_{\rm gs}$$
 – $g_{\rm mb} v_{\rm o}$ – $\frac{v_{\rm o}}{R_{\rm L}}$ = 0

$$g_{\rm m} \left(v_{\rm i} - v_{\rm o} \right) - g_{\rm mb} v_{\rm o} - \frac{v_{\rm o}}{R_{\rm L}} = 0$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

$$g_{\rm m} v_{\rm i} = v_{\rm o} (g_{\rm m} + g_{\rm mb} + \frac{1}{R_{\rm L}})$$

Quindi il guadagno di tensione dello stadio a drain comune, nelle ipotesi in cui R_{L} >>1, è dato da:

$$a_{\rm v} = \frac{V_{\rm o}}{V_{\rm i}} = \frac{g_{\rm m}}{g_{\rm m} + g_{\rm mb}}$$

Si può notare come il guadagno dell'inseguitore di source non è così ben definito come quello di un inseguitore di emettitore che per elevati valori di R_L tende a uno.

Per il calcolo della resistenza di uscita consideriamo il circuito di figura 62 dove è stato cortocircuitato il generatore di ingresso, mentre in uscita è stato collegato un generatore di corrente di prova i_x.

figura 62 - Circuito per il calcolo della resistenza di uscita

Si ha subito:

$$V_{gs} = V_{bs} = -V_x$$

$$i_{x} = \frac{v_{x}}{R_{L}} - g_{m} v_{gs} - g_{mb} v_{bs} = \frac{v_{x}}{R_{L}} + v_{x} (g_{m} + g_{mb}) = v_{x} (\frac{1}{R_{L}} + g_{m} + g_{mb})$$

La resistenza di uscita, ipotizzando una RL>>1, è data da:

$$R_o = \frac{V_x}{i_x} = \frac{1}{g_m + g_{mb}}$$

che coincide con la resistenza di ingresso dello stadio a gate comune quando R_L è grande, mentre la resistenza di ingresso è naturalmente $R_i = \infty$. L'impiego tipico di questo stadio è

quello di disaccoppiare stadi amplificatori in cascata e di traslare livelli di tensione. Quando vengono utilizzati come traslatori di livello, risultano più flessibili degli inseguitori di emettitore, dato che il valore in continua V_{GS} può essere fissato a piacere, entro certi limiti, tramite la scelta del rapporto W/L.

Nella figura 63 è riportato lo stadio cascode in tecnologia bipolare. Le caratteristiche principali di questa configurazione sono le seguenti:

- la resistenza di uscita è molto alta;
- non si ha controreazione ad alta frequenza dall'uscita all'ingresso attraverso C_µ come invece avviene nella configurazione con emettitore a massa;
- elevato guadagno di tensione in un singolo stadio amplificatore con carico attivo pnp.

figura 63 - Stadio amplificatore cascode

Passiamo ora al calcolo dei parametri per piccoli segnali considerando il circuito di figura 64, dove si sono trascurate le resistenze intrinseche del silicio sulle basi r_b.

La resistenza di ingresso risulta essere semplicemente la r_{II} del transistor Q1: Michele Marino – mmelectronics@tim.it 60 Università degli studi di Roma "La Sapienza" 60 Prof. Alessandro Trifiletti

Poiché il guadagno di corrente tra emettitore e collettore di Q2 è circa pari a uno, la transconduttanza del circuito tra ingresso e uscita è circa uguale alla transconduttanza di Q1:

$$G_m \approx g_{m1}$$

La resistenza di uscita si ottiene cortocircuitando a massa l'ingresso e applicando un generatore di prova all'uscita. Se $v_i = 0$ il generatore controllato $g_{m1} v_1$ non è attivo per cui il secondo stadio si presenta con uno stadio con degenerazione di emettitore, dove $R_E = r_{o1}$.

$$R_{o} \approx r_{o2} \left(\begin{array}{c} \frac{1 + g_{m2} r_{o1}}{1 + \frac{g_{m2} r_{o1}}{\beta_{02}}} \right)$$

Poiché g_{m2} r_{o1} >> β_{02} , si ha:

$$R_0 \approx r_{02} \beta_{02}$$

Quindi lo stadio cascole presenta una resistenza di uscita che è più grande di un fattore β_{02} rispetto a quella del solo stadio ad emettitore comune.

Il guadagno di tensione dello stadio è dato da:

$$A_v = G_m \ R_o = g_m \ r_{o2} \ \beta_{02}$$

Anche il guadagno di tensione risulta essere più grande di un fattore β_0 rispetto al caso di un singolo transistor. Nel calcolo della resistenza di uscita abbiamo trascurato la resistenza r_{μ} in quanto, per transistor npn, questa è usualmente molto maggiore di β_0 r_o e quindi non influenza eccessivamente la R_o.

Consideriamo lo stadio differenziale di figura 65 che rappresenta il blocco fondamentale dei circuiti analogici integrati.

figura 65 - Stadio differenziale con carico resistivo

In corrispondenza di un piccolo segnale differenziale applicato all'ingresso, il morsetto di emettitore E non subisce sensibili variazioni per cui si comporta da terra virtuale, e il circuito può essere ridotto a metà come mostrato nella figura 66. Nella figura 67 viene riportato mezzo circuito equivalente per piccoli segnali dello stadio differenziale originario dove si è omesso, per semplicità, il fattore ½ dalle tensioni di ingresso e di uscita.

figura 66 - Mezzo circuito differenziale per piccoli segnali

Consideriamo l'impedenza di ingresso vista guardando attraverso il piano AA nella figura 67. La corrente i₁ che raggiunge l'uscita attraverso la capacità C_{μ} e quindi prodotta da v₁, è data da:

 $i_1 = (v_0 - v_1) S C_{11}$

figura 67 - Circuito equivalente per piccoli segnali del mezzo circuito differenziale

Sommando le corrente al nodo di collettore, si ha:

$$g_{\rm m} v_1 + \frac{v_0}{R_{\rm L}} + (v_0 - v_1) \ {\rm s} \ C_{\mu} = 0$$

L'ultimo termine rappresenta la corrente trasferita dall'ingresso all'uscita attraverso C_{μ} ed è in genere trascurabile se paragonato con i primi due, per cui:

In queste condizioni si ha:

$$i_1 = (1 + g_m R_L) s C_\mu v_1$$

 $\frac{i_1}{v_1} = (1 + g_m R_L) C_\mu s$

L'impedenza vista guardando attraverso il piano AA è una capacità e viene chiamata capacità di Miller.

$$C_{M} = (1 + g_{m} R_{L}) C_{\mu}$$

ed essendo $A_v = g_m R_L$, si ha:

$$C_{M} = (1 + A_{v}) C_{\mu}$$

Poiché $A_v >> 1$ segue che $C_M >> C_{\mu}$.

Utilizzando tale trasformazione possiamo ora passare al calcolo della funzione di trasferimento di andata e dell'impedenza di ingresso attraverso il circuito di figura 68, dove viene utilizzata l'approssimazione dell'effetto Miller.

figura 68 – Approssimazione dell'effetto Miller per il mezzo circuito differenziale

La capacità C_t rappresenta la capacità di Miller sommata alla capacità C_{π} del transistore e di conseguenza degrada la risposta in frequenza dell'amplificatore. Dall'analisi del circuito si ha:

$$v_{1} \approx \frac{\frac{r_{\pi}}{1 + r_{\pi} C_{t} s}}{\frac{r_{\pi}}{1 + r_{\pi} C_{t} s} + R_{s} + r_{b}} v_{i}$$

$$v_{0} - g_{m} R_{L} v_{1}$$

$$C_{t} = C_{M} + C_{\pi}$$

Quindi il guadagno di modo differenziale è dato da:

$$A_{dm} = \frac{V_{o}}{V_{i}} = -g_{m} R_{L} \frac{r_{\pi}}{R_{S} + r_{b} + r_{\pi}} \frac{1}{1 + s C_{t} \frac{(R_{S} + r_{b}) r_{\pi}}{R_{S} + r_{b} + r_{\pi}}} = \frac{K}{1 - \frac{s}{p_{1}}}$$

dove:

$$K = -g_m R_L \frac{r_{\pi}}{R_S + r_b + r_{\pi}}$$

$$p_1 = - \frac{R_{\rm S} + r_{\rm b} + r_{\rm m}}{(R_{\rm S} + r_{\rm b}) r_{\rm m}} \frac{1}{C_{\rm t}}$$

Quindi la frequenza di taglio a -3 dB è data da:

$$\omega_{-3 dB} = |p_1| = \frac{R_{\rm S} + r_{\rm b} + r_{\rm m}}{(R_{\rm S} + r_{\rm b}) r_{\rm m}} \frac{1}{C_{\rm t}} = \frac{R_{\rm S} + r_{\rm b} + r_{\rm m}}{(R_{\rm S} + r_{\rm b}) r_{\rm m}} \frac{1}{C_{\rm m} + (1 + g_{\rm m} R_{\rm L}) C_{\rm m}}$$

Come si può vedere, all'aumentare di C_t, la frequenza a -3 dB dell'amplificatore diminuisce. Se $R_s >> r_{\pi} e \operatorname{con} R_L$ piccolo, la frequenza a -3 dB diventa:

$$\omega_{-3 \, dB} = |p_1| \approx \frac{1}{r_{\pi} C_{\pi}} = \frac{1}{\beta_0} \frac{g_m}{C_{\pi}} = \frac{\omega_T}{\beta_0}$$

Quindi valori maggiori di R_L daranno valori inferiori di $|p_1|$, mentre valori minori di R_s daranno valori maggiori di $|p_1|$.

Metodi di compensazione (moltiplicazione per effetto Miller)

Consideriamo un amplificatore operazionale e analizziamo il comportamento in frequenza dello stadio di guadagno mostrato in figura 69.

Nella figura 70 viene riportato il circuito equivalente per piccoli segnali dello stadio precedente dove G_{in} e G_{out} rappresentano la conduttanza complessiva in parallelo in ingresso e in uscita, mentre C_{in} e C_{out} rappresentano la capacità complessiva in parallelo in ingresso e in uscita.

Come si può vedere dallo schema la capacità C_C risulta in parallelo alla capacità collettorebase del transistor bipolare per cui possiamo porre $C_p = C_\mu + C_C$. Sommando le correnti al nodo di base si ottiene:

$$i_s = G_{in} v_{in} + s C_{in} v_{in} + s C_p (v_{in} - v_{out})$$

dalla quale riordinando si ha:

 $i_s = v_{in} \left[G_{in} + s \left(C_{in} + C_p\right)\right] - s C_p v_{out}$

Sommando le correnti al nodo di collettore si ottiene:

$$g_m v_{in} + G_{out} v_{out} + s C_{out} v_{out} + s C_p (v_{out} - v_{in}) = 0$$

dalla quale riordinando si ha:

$$v_{in} (g_m - s C_p) = -v_{out} [G_{out} + s (C_{out} + C_p)]$$
$$v_{in} = -v_{out} \left[\frac{G_{out} + s (C_{out} + C_p)}{g_m - s C_p} \right]$$

Sostituendo nella relazione relative al nodo di base, si ha:

$$i_{s} = -v_{out} \left[\frac{G_{out} + s (C_{out} + C_{p})}{g_{m} - s C_{p}} \right] \left[G_{in} + s (C_{in} + C_{p}) \right] - s C_{p} v_{out}$$

Risolvendo si ottiene:

$$i_{s} = -v_{out} \left\{ \frac{[G_{out} + s (C_{out} + C_{p})] [G_{in} + s (C_{in} + C_{p})] + s C_{p} (g_{m} - s C_{p})}{g_{m} - s C_{p}} \right\}$$

Si ottiene la seguente funzione di trasferimento:

$$\left|\frac{v_{out}}{i_s}\right| = \left\{\frac{g_m - s C_p}{[G_{out} + s (C_{out} + C_p)] [G_{in} + s (C_{in} + C_p)] + s C_p (g_m - s C_p)}\right\}$$
$$\left|\frac{v_{out}}{i_s}\right| = \left\{\frac{g_m - s C_p}{[G_{in} G_{out} + s [C_{in} G_{out} + C_p G_{out} + G_{in} C_{out} + G_{in} C_p + g_m C_p] + s^2 (C_{in} C_{out} + C_p C_{out} + C_{in} C_p)}\right\}$$

Normalizzando in modo tale che il termine noto al denominatore sia unitario, si ha:

$$\left|\frac{v_{out}}{i_s}\right| = \left\{\frac{(g_m - s C_p) R_{in} R_{out}}{[1 + s [R_{in} (C_{in} + C_p) + R_{out} (C_{out} + C_p) + g_m C_p R_{in} R_{out}] + s^2 R_{in} R_{out} (C_{in} C_{out} + C_p C_{out} + C_{in} C_p)}\right\}$$

Supponiamo, per semplificare i calcoli, che ci sia una situazione di polo dominante, cioè:

$$D(s) = (s - p_1) (s - p_2) = \left(1 - \frac{s}{p_1}\right) \left(1 - \frac{s}{p_2}\right) p_1 p_2 = 1 - s \left(\frac{1}{p_1} + \frac{1}{p_2}\right) + \frac{s^2}{p_1 p_2}$$

Poiché p₁<<p₂, la precedente relazione si semplifica nel seguente modo:

$$D(s)\approx 1-\frac{s}{p_1}+\frac{s^2}{p_1\,p_2}$$

Dal confronto con il denominatore della funzione di trasferimento prima calcolata si ottengono i due poli:

$$p_1 = -\frac{1}{R_{in} (C_{in} + C_p) + R_{out} (C_{out} + C_p) + g_m C_p R_{in} R_{out}}$$

Poiché, se C_p è grande, l'effetto dominante è quello Miller si ha:

$$p_1 \approx -\frac{1}{g_m C_p R_{in} R_{out}}$$
$$p_2 \approx -\frac{g_m C_p}{C_{in} C_{out} + C_p (C_{out} + C_{in})}$$

Come si può vedere, al crescere di C_p il valore del polo dominante $|p_1|$ diminuisce mentre, il valore del polo $|p_2|$ cresce. In definitiva al crescere di C_p si ha la separazione dei poli (*pole splitting*). In assenza della capacità di compensazione ($C_p = 0$) i poli dello stadio sono dati da:

$$p_1 \approx -\frac{1}{R_{in}C_{in}}$$
 $p_2 \approx -\frac{1}{R_{out}C_{out}}$

L'aggiunta di un'elevata capacità di Miller fa sì che il polo dominante si sposti ad una frequenza molto più alta mentre la frequenza del polo dominante tende a diminuire. Prendiamo di nuovo in considerazione l'analisi del circuito di figura ? e supponiamo che C₁ sia molto grande rispetto agli altri parametri. In questo caso i poli sono dati da:

$$p_1 \approx -\frac{1}{R_{in} C_{in}}$$
 $p_2 \approx -\frac{1}{R_{out} (C_{out} + C_p)}$

Come si può vedere, la creazione di un polo dominante rendendo C₁ grande, produce un polo non dominante che è molto più piccolo di quello che si ottiene se il polo dominante è creato aumentando la capacità di Miller C_p. Ritornando alla funzione di trasferimento dello stadio, questa presenta anche uno zero reale positivo dato da:

$$z = \frac{g_m}{C_p}$$

Nel caso bipolare il g_m è molto elevato per cui lo zero ha un valore così elevato da poter essere trascurato.

Per quanto riguarda la tecnologia MOS la topologia base di un amplificatore operazionale è sostanzialmente simile a quella bipolare. I poli del circuito sono ancora dati da:

$$p_1 \approx -\frac{1}{g_m C_p R_{in} R_{out}}$$
 $p_2 \approx -\frac{g_m C_p}{C_{in} C_{out} + C_p (C_{out} + C_{in})}$

mentre lo zero è dato da:

$$z = \frac{g_m}{C_p}$$

In questo caso però, poiché il valore di g_m è tipicamente di ordine di grandezza inferiore rispetto al caso bipolare lo zero non è più trascurabile perchè la frequenza in corrispondenza della quale lo zero causa un cambiamento di pendenza nella funzione di trasferimento può risultare inferiore alla frequenza nominale di guadagno unitario dell'amplificatore. Il basso valore di g_m tende quindi a diminuire il valore di $|p_2|$ e di conseguenza peggiora la separazione dei poli.

Inoltre, ad alta frequenza, la trasmissione diretta attraverso C_C tende a prevalere rispetto al normale cammino di guadagno dovuto a g_m , se questo è piccolo. In queste condizioni (alta frequenza) la capacità C_C si comporta come un corto circuito che porta il transistor ad una configurazione di connessione a diodo, comportandosi così come un semplice carico resistivo di valore pari a $1/g_m$ per lo stadio di ingresso, facendo mancare lo sfasamento di 180° introdotto a frequenze più basse.

Gli effetti dello zero nel semipiano destro (*RHP – Right Half Plain*) possono essere eliminati con vari metodi uno dei quali consiste nell'interporre tra l'uscita e il condensatore di compensazione un inseguitore di source (guadagno di tensione circa unitario) al fine di evitare la trasmissione diretta del segnale verso l'uscita. Questo naturalmente comporta l'introduzione di dispositivi addizionali con le relative correnti di polarizzazione. L'altro metodo consiste nel cancellare lo zero inserendo una resistenza R_C in serie al condensatore di compensazione come mostrato nella figura 71 (trascuriamo la capacità C_µ).

figura 71 - Circuito equivalente per piccoli segnali con resistenza e condensatore di compensazione

$$s C_p = \frac{s C_C}{1 + s R_C C_C}$$

Il numeratore della funzione di trasferimento era il seguente:

$$N(s) = g_m - s C_p$$

Sostituendo il valore prima calcolato si ha:

$$N(s) = g_{m} - \frac{s C_{C}}{1 + s R_{C} C_{C}} = \frac{g_{m} (1 + s R_{C} C_{C}) - s C_{C}}{1 + s R_{C} C_{C}} = \left(\frac{g_{m}}{1 + s R_{C} C_{C}}\right) \left[1 + s \left(\frac{C_{C}}{g_{m}}\right) (g_{m} R_{C} - 1)\right]$$

Quindi lo zero è dato da:

$$z = -\frac{g_{m}}{C_{C}(g_{m} R_{C} - 1)} = \frac{1}{C_{C}\left(\frac{1}{g_{m}} - R_{C}\right)}$$

Osservando la relazione precedente notiamo che lo zero scompare quando $R_c = 1/g_m$. Aumentando ulteriormente il valore della resistenza di compensazione è possibile spostare lo zero nel semipiano sinistro al fine di migliorare il margine di fase dell'amplificatore.

Specchi di corrente

Nella figura 72 viene riportato lo schema principale di un generatore di corrente a due transistor dove Q1 è connesso a diodo, forzando a zero la tensione collettore-base.

figura 72 - Generatore di corrente in tecnologia bipolare

In queste condizioni non si verifica alcuna iniezione in corrispondenza della giunzione collettore-base poiché la tensione ai suoi capi è nulla e il transistor si trova nella regione attiva diretta. Supporremo i transistor identici e considereremo la resistenza di uscita del transistor Q2 infinita. Dall'analisi del circuito, poiché Q1 e Q2 hanno la stessa tensione base-emettitore, segue che:

 $\mathbf{I}_{C1} = \mathbf{I}_{C2}$

Sul collettore di Q1 si ha:

$$I_{rif} - I_{C1} - 2 \frac{I_{C1}}{\beta_F} = 0$$
$$I_{C1} = \frac{I_{rif}}{1 + \frac{2}{\beta_F}} = I_{C2}$$

Se β_F è grande la corrente di collettore I_{C2} è circa uguale alla corrente di riferimento:

$$I_{C2} \approx I_{rif} = \frac{V_{CC} - V_{BE(on)}}{R}$$

Quindi se i dispositivi sono identici la corrente di uscita è uguale a quella di riferimento.

Variando le aree di emettitore di Q1 e Q2 si può ottenere un qualsiasi valore della corrente

di uscita I_{C2}, al prezzo di una maggiore occupazione di area sul chip, per cui tale tecnica Michele Marino – mmelectronics@tim.it 71 Elettronica analogica con applicazioni Università degli studi di Roma "La Sapienza" Prof. Alessandro Trifiletti

figura 73 – Generatore di corrente con dispositivo addizionale Q3

La corrente di emettitore di Q3, trascurando gli effetti della resistenza finita d'uscita, è data da:

$$- I_{E3} = \frac{I_{C1}}{\beta_F} + \frac{I_{C2}}{\beta_F} = \frac{2}{\beta_F} I_{C2}$$

La corrente di base di Q3 è data da:

$$I_{B3} = \frac{-I_{E3}}{1 + \beta_F} = \frac{2}{\beta_F (1 + \beta_F)} I_{C2}$$

Quindi sul collettore di Q1 si ha:

$$I_{rif} - I_{C1} - \frac{2}{\beta_F (1 + \beta_F)} I_{C2} = 0$$

Quindi la corrente di uscita, essendo $I_{C1} = I_{C2}$, è data da:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

$$I_{C2} = \frac{I_{rif}}{1 + \frac{2}{\beta_F^2 + \beta_F}}$$

Quindi, trascurando gli effetti della resistenza di uscita, la corrente di uscita e quella di riferimento differiscono soltanto per un fattore $1/B_{F^2}$. La funzione del transistor Q3 è quella di fornire la corrente di base di Q1 e Q2 al fine di ridurre l'asimmetria tra la corrente di uscita e quella di riferimento.

Nella figura 74 viene riportato il generatore di corrente elementare in tecnologia MOSFET.

figura 74 - Generatore di corrente in tecnologia MOSFET

II MOSFET M1 connesso a diodo, genera una tensione di polarizzazione V_{GS1} fissata da I_{rif} . Poiché $V_{GS1} = V_{GS2}$ e M1 ed M2 sono entrambi in zona attiva diretta, la corrente di uscita, trascurando gli effetti della resistenza di uscita, è data da:

$$\mathbf{I}_{D1} = \mathbf{I}_{rif} = \mathbf{I}_{D2}$$

In tecnologia MOSFET dunque non vi è un termine di errore dovuto alle correnti di base come avviene nel caso bipolare e quindi non vi è necessità di introdurre dispositivi addizionali come Q3 nel caso bipolare. Una differenza tra le due tecnologie è costituita dal fatto che, essendo la resistenza di uscita r_o inversamente proporzionale alla corrente di polarizzazione, in tecnologia MOSFET tale resistenza, per un determinato valore di I_D può essere aumentata aumentando la lunghezza del canale. Uno svantaggio della tecnologia MOSFET risiede nel fatto che la dinamica di uscita è fissata a V_{DS(sat)} = V_{GS} –V_t che è normalmente superiore rispetto alla V_{CE(sat)} della tecnologia bipolare.

Generatore di corrente di Widlar

Questa configurazione viene utilizzata quando sono richieste piccole correnti di polarizzazione ottenibili dalla configurazione semplice presentata prima, rendendo differenti le V_{BE} dei transistor Q1 e Q2. Lo schema è riportato nella figura 75 dove è stata inserita una resistenza R_2 sull'emettitore di Q2. Per questo generatore non esiste una versione utilizzante FET.

figura 75 - Specchio di corrente di Widlar

Trascurando le correnti di base, considerando V_A infinito e sommando le tensioni lungo la maglia emettitore-base, si ha:

$$V_{BE1} - V_{BE2} - R_2 I_{C2} = 0$$

Essendo:

$$I_{C1} = I_{S1} \exp\left(\frac{V_{BE1}}{V_{T}}\right) \left(1 + \frac{V_{CE1}}{V_{A1}}\right) \approx I_{S1} \exp\left(\frac{V_{BE1}}{V_{T}}\right)$$
$$I_{C2} = I_{S2} \exp\left(\frac{V_{BE2}}{V_{T}}\right) \left(1 + \frac{V_{CE2}}{V_{A1}}\right) \approx I_{S2} \exp\left(\frac{V_{BE2}}{V_{T}}\right)$$
$$V_{T} \ln\left(\frac{I_{C1}}{I_{S1}}\right) - V_{T} \ln\left(\frac{I_{C2}}{I_{S2}}\right) - R_{2} I_{C2} = 0$$

In definitiva si ha:

$$V_{T} \ln \left(\frac{I_{C1}}{I_{C2}} \right) = R_2 I_{C2}$$

Generatore di corrente di Wilson

Il generatore di corrente in questione consente di ottenere elevati valori della resistenza di uscita R₀ accompagnato da un elevato grado di cancellazione del termine di errore dovuto alla corrente di base.

figura 76 – Generatore di corrente di Wilson in tecnologia bipolare

Osservando lo schema circuitale di figura 76, la differenza tra la corrente di riferimento I_{rif} e la corrente di collettore di Q1 fluisce nella base di Q2. Si ha:

$$I_{E2} = (1 + \beta_F) I_{B2}$$

Trascurando le correnti di base di Q1 e Q3, tale corrente fluisce nel transistor Q3 connesso a diodo il quale impone una corrente dello stesso valore in Q1. Si crea così un cammino di reazione che regola I_{C1} in modo che sia circa uguale alla corrente di riferimento. Quindi la corrente di collettore di Q3 rimane molto simile a quella di Q1 indipendentemente dalla tensione di collettore di Q2 e questo comporta che la corrente di collettore di Q2 rimanga pressoché costante, dando così luogo ad un'elevata resistenza di uscita.

Supponendo $V_A = \infty$ e che i transistor siano identici, dall'analisi in continua, si ha:

$$-I_{E2} = I_{C3} + I_{B3} + I_{B1} = I_{C3} \left(1 + \frac{1}{\beta_F} \right) + \frac{I_{C1}}{\beta_F} = I_{C3} \left(1 + \frac{2}{\beta_F} \right)$$

Quindi la corrente di collettore di Q2 è data da:

$$I_{C2} = -I_{E2} \left(\frac{\beta_F}{1 + \beta_F} \right) = I_{C3} \left(1 + \frac{2}{\beta_F} \right) \left(\frac{\beta_F}{1 + \beta_F} \right)$$

Si ottiene il valore di I_{C3}:

$$I_{C3} = I_{C2} \left(\frac{\beta_F}{1 + \beta_F} \right) = \left[\frac{1}{\left(1 + \frac{2}{\beta_F} \right) \left(\frac{\beta_F}{1 + \beta_F} \right)} \right]$$

Sul nodo di collettore di Q1 si ha:

$$\mathbf{I}_{\mathrm{C1}} = \mathbf{I}_{\mathrm{rif}} - \frac{\mathbf{I}_{\mathrm{C2}}}{\beta_{\mathrm{F}}}$$

Poiché $I_{C1} = I_{C3}$ si ha in definitiva:

$$I_{C2} = I_{rif} \left(1 - \frac{2}{\beta_F^2 + 2\beta_F + 2} \right)$$

Da un'analisi per piccoli segnali del generatore di Wilson, trascurando r_{μ} , fornisce una resistenza di uscita pari a:

$$R_{o}\approx\frac{-\beta_{0} r_{o2}}{2}$$

Il generatore di Wilson può essere realizzato anche in tecnologia MOS, come mostrato nella figura 77.

figura 77 - Generatore di corrente di Wilson in tecnologia MOS

figura 78 – Generatore di Wilson modificato in tecnologia MOS

In definitiva il generatore di corrente di Widlar è utile per ottenere piccole correnti di uscita, mentre il circuito di Wilson per ottenere elevata resistenza di uscita e bassa sensibilità alle correnti di base dei transistor e quindi correnti maggiori.

Retroazione parallelo-serie con effetto di carico

Nella figura 80 viene mostrato lo schema base della retroazione parallelo-serie dove, per comodità, si sono utilizzati i parametri g così definiti:

$$i_1 = g_{11} V_1 + g_{12} i_2$$

 $V_2 = g_{21} V_1 + g_{22} i_2$

$$g_{11} = \frac{i_1}{v_1} \begin{vmatrix} g_{12} = \frac{i_1}{i_2} \\ i_2 = 0 \end{vmatrix} \qquad g_{12} = \frac{v_2}{v_1} \begin{vmatrix} g_{21} = \frac{v_2}{v_1} \\ i_2 = 0 \end{vmatrix} \qquad g_{22} = \frac{v_2}{i_2} \begin{vmatrix} v_1 = 0 \\ v_1 = 0 \end{vmatrix}$$

Sommando le correnti in ingresso al circuito di figura ? si ha:

$$i_s = (y_s + g_{11a} + g_{11f}) v_i + (g_{12a} + g_{12f}) i_o$$

figura 80 - Schema base della retroazione parallelo-serie

mentre in uscita si ha:

$$(g_{21a} + g_{21f}) v_i + (z_L + g_{22a} + g_{22f}) i_o = 0$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

(

$$y_i = y_s + g_{11a} + g_{11f}$$

 $y_o = z_L + g_{22a} + g_{22f}$

Facciamo inoltre le seguenti ipotesi:

 $|g_{12a}| << |g_{12f}|$ $|g_{21a}| >> |g_{21f}|$

Ciò equivale a dire che trascuriamo il trasferimento dall'uscita all'ingresso attraverso l'amplificatore di andata così come trascuriamo il trasferimento dall'ingresso all'uscita attraverso la rete di reazione. Dalle precedenti relazioni e dalle relative ipotesi si ha:

$$\frac{i_{o}}{i_{s}} = A \approx \frac{\frac{-g_{12a}}{yi z_{o}}}{1 + \left(\frac{-g_{12a}}{yi z_{o}}\right)g_{12f}} = \frac{a}{1 + af}$$

dove:

$$a = \frac{-g_{12a}}{yi z_0}$$

 $f = g_{12f}$

Quindi si ottiene il nuovo circuito retroazionato con la rete di reazione ideale e gli effetti di carico riportati nell'amplificatore di andata, come mostrato nella figura 81.

figura 81 – Schema della controreazione parallelo-serie con effetti di carico

Consideriamo il doppio stadio con reazione di corrente mostrato nella figura 82.

Rappresentiamo la rete di reazione mediante un doppio dipolo attraverso i parametri g, come mostrato nella figura 83.

figura 83 - Calcolo dei parametri g per la rete di reazione

Si ottengono, trascurando g_{21f}, i seguenti valori dei parametri:

$$g_{11f} = \frac{i_1}{v_1} \bigg|_{i_2 = 0} = \frac{1}{R_F + R_E}$$
$$g_{12f} = \frac{i_1}{i_2} \bigg|_{v_1 = 0} = \frac{R_E}{R_F + R_E}$$

$$g_{22f} = \frac{V_2}{i_2} \bigg|_{V_1 = 0} = R_E / / R_F$$

In queste condizioni il circuito di figura 82 si può rappresentare come in figura 84.

I parametri y invece, sono definiti nel seguente modo:

 $i_1 = y_{11} v_1 + y_{12} v_2$ $i_2 = y_{21} v_1 + y_{22} v_2$

figura 85 - Doppio bipolo per il calcolo dei parametri y

$$y_{11} = \frac{i_1}{v_1} \begin{vmatrix} y_{12} = \frac{i_1}{v_2} \\ v_2 = 0 \end{vmatrix} \quad y_{12} = \frac{i_2}{v_1} \begin{vmatrix} y_{21} = \frac{i_2}{v_1} \\ v_1 = 0 \end{vmatrix} \quad y_{22} = \frac{i_2}{v_2} \begin{vmatrix} y_{22} = \frac{i_2}{v_2} \\ v_1 = 0 \end{vmatrix}$$

Rappresentiamo ora la rete di reazione mediante un doppio dipolo attraverso i parametri y, come mostrato nella figura 86.

figura 86 - Calcolo dei parametri y per la rete di reazione

Se R_E>>R_F, si hanno i seguenti parametri:

$$\begin{aligned} y_{11f} &= \frac{i_1}{v_1} \bigg|_{v_2 = 0} = \frac{1}{R_F} \\ y_{12f} &= \frac{i_1}{v_2} \bigg|_{v_1 = 0} = -\frac{1}{R_F / R_E} \approx -\frac{1}{R_F} \\ y_{22f} &= \frac{i_2}{v_2} \bigg|_{v_1 = 0} = \frac{1}{R_F / R_E} \end{aligned}$$

In questo caso il circuito di figura 82 si trasforma come in figura 87.

figura 87 - Doppio stadio con controreazione di corrente ed effetti di carico

Prendiamo ora in considerazione il circuito equivalente a π di un BJT per piccoli segnali e rappresentiamolo mediante i parametri y come mostrato qui di seguito.

figura 88 – Circuito di Giacoletto (modello a π per piccoli segnali)

Trascurando la resistenza intrinseca del silicio della base r_b, si trasforma nel circuito di figura 89.

figura 89 – Circuito per piccoli segnali a parametri y

Consideriamo ora la parte di circuito sulla destra del punto X di figura 87 e applichiamo la rappresentazione del circuito di Giacoletto mediante parametri y.

I parametri y sono così definiti:

$$\begin{aligned} Y_1 &= g_{\pi} + s \ C_{\pi} \\ Y_2 \ trascurabile \\ Y_3 &= g_f + g_e + g_l = g \end{aligned}$$

figura 90 – Schema dello stadio amplificatore costituito dal transistor Q2

Al nodo di base si ha:

$$(V_i - V_E) Y_1 + (V_i - V_E) g_m = V_E Y_3$$

Riordinando:

$$V_i (Y_1 + g_m) = V_E (Y_1 + g_m + Y_3)$$

Quindi la funzione di trasferimento dello stadio amplificatore costituito da Q2 nella figura 87, è data da:

$$\frac{V_E}{V_i} = \frac{Y_1 + g_m}{Y_1 + Y_3 + g_m}$$

Sostituendo i valori di Y₁ e Y₃ si ha:

$$\frac{V_{\rm E}}{V_{\rm i}} = \frac{g_{\rm m} + g_{\rm II} + s C_{\rm II}}{g_{\rm m} + g_{\rm II} + s C_{\rm II} + g_{\rm f} + g_{\rm e} + g_{\rm II}}$$

Poiché la quantità $g = g_f + g_e + g_l$ è trascurabile, $g_m > r_{\pi}$ per il β_0 dell'amplificatore, in frequenza lo zero e il polo sono uguali e quindi si elidono per cui lo stadio ha un comportamento simile ad un buffer.

Calcoliamo l'ammettenza di ingresso dello stadio considerando il nodo di base, cioè:

$$I_{i} = (V_{i} - V_{E}) Y_{1} = V_{i} \left(1 - \frac{V_{E}}{V_{i}}\right) Y_{1} = V_{i} Y_{1} \left(1 - \frac{Y_{1} + g_{m}}{Y_{1} + Y_{3} + g_{m}}\right)$$
$$-\frac{I_{i}}{V_{i}} = Y_{i} = \frac{Y_{1} Y_{3}}{Y_{1} + Y_{3} + g_{m}}$$

Sostituendo i valori di Y₁ e Y₃ si ha:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

$$Y_{i} = \frac{(g_{II} + s C_{II}) g}{g_{m} + g_{II} + s C_{II} + g} = \frac{g_{II} g + s C_{II} g}{g_{m} + g_{II} + s C_{II} + g}$$

L'ammettenza in bassa frequenza (s = 0) è data da:

$$Y_{i0} = \frac{g_{II} g}{g_{II} + g_{II} + g}$$

Se $g_m >> g_{\pi} + g$, si può approssimare con la seguente relazione:

$$Y_{i0} \approx \frac{g_{\pi}}{g_m} g = \frac{g}{-\beta_0}$$

Quindi per l'ammettenza di ingresso in frequenza si ha:

$$Y_{i} = \frac{g_{\pi} g}{g_{m} + g_{\pi} + g} \frac{\left(1 + \frac{s C_{\pi}}{g_{\pi}}\right)}{\left(1 + \frac{s C_{\pi}}{g_{m} + g_{\pi}}\right)} \approx Y_{i0} \left(1 + \frac{s C_{\pi}}{g_{\pi}}\right) \approx \frac{g_{\pi}}{g_{m}} g \left(1 + \frac{s C_{\pi}}{g_{\pi}}\right)$$
trascurabile poichè g_m>>1

Ritornando alla figura 87, lo stadio alla sinistra del punto X, rappresentato da Q1, vede un'ammettenza di carico pari a Y_i. Utilizzando la rappresentazione con parametri y del circuito di Giacoletto anche per il transistor Q1, si hanno i seguenti valori dei parametri:

$$\begin{aligned} Y_1 &= g_{\pi} + s C_{\pi} + g_f \\ Y_2 &= s C_{\mu} \\ Y_3 &= g_o + g_c + Y_i \end{aligned}$$

Sul nodo di base si ha:

$$I_{s} = V_{B} Y_{1} + (V_{B} - V_{C}) Y_{2}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

dalla quale, riordinando si ottiene:

$$I_s = V_B (Y_1 + Y_2) - V_C Y_2$$

Sul nodo di collettore si ha:

$$(V_{\rm C} - V_{\rm B}) Y_2 = g_{\rm m} V_{\rm B} + V_{\rm C} Y_3$$

dalla quale, riordinando segue che:

$$V_{B} (Y_{2} - g_{m}) = V_{C} (Y_{3} + Y_{2})$$
$$V_{B} = V_{C} \left(\frac{Y_{2} + Y_{3}}{Y_{2} - g_{m}} \right)$$

Sostituendo nell'equazione al nodo di base calcolata in precedenza, si ha:

$$I_{s} = V_{C} \left[(Y_{1} + Y_{2}) \left(\frac{Y_{2} + Y_{3}}{Y_{2} - g_{m}} \right) - Y_{2} \right] = V_{C} \left[\frac{Y_{1} Y_{2} + Y_{2}^{2} + Y_{1} Y_{3} + Y_{2} Y_{3} + g_{m} Y_{2} - Y_{2}^{2}}{Y_{2} - g_{m}} \right]$$

In definitiva, la transimpedenza ad anello aperto, è data da:

$$TZ^{OL} = \frac{V_C}{I_s} = \frac{Y_2 - g_m}{Y_1 Y_2 + Y_1 Y_3 + Y_2 Y_3 + g_m Y_2}$$

Dalle relazioni precedenti si ha anche:

$$V_{\rm C} = V_{\rm B} \left(\frac{Y_2 - g_{\rm m}}{Y_2 + Y_3} \right)$$

Per cui la corrente l_s è data da:

$$I_{s} = V_{B} \left[(Y_{1} + Y_{2}) - Y_{2} \left(\frac{Y_{2} - g_{m}}{Y_{2} + Y_{3}} \right) \right] = V_{B} \left[\frac{Y_{1} Y_{2} + Y_{2}^{2} + Y_{1} Y_{3} + Y_{2} Y_{3} + g_{m} Y_{2} - \frac{Y_{2}^{2}}{Y_{2}^{2}} \right]$$

L'impedenza di ingresso è quindi data da:

$$Z_{i} = \frac{V_{B}}{I_{s}} = \frac{Y_{2} + Y_{3}}{Y_{1}Y_{2} + Y_{1}Y_{3} + Y_{2}Y_{3} + g_{m}Y_{2}}$$

Analizziamo ora la risposta in frequenza dello stadio scrivendo la transimpedenza come segue:

$$TZ^{OL} = \frac{N(s)}{D(s)}$$
$$N(s) = Y_2 - g_m = s C_{\mu} - g_m = -g_m \left(1 - \frac{s C_{\mu}}{g_m}\right)$$

Per quanto riguarda il denominatore, al fine di semplificare il calcolo, ridefiniamo i parametri nel seguente modo:

$$\begin{aligned} Y_1 &= g_1 + s \ C_1 \\ Y_2 &= s \ C_2 \\ Y_3 &= g_3 + s \ C_3 \end{aligned}$$

$$D(s) &= Y_1 \left(Y_2 + Y_3 \right) + Y_2 \left(Y_3 + g_m \right) = (g_1 + s \ C_1) \left(s \ C_2 + g_3 + s \ C_3 \right) + s \ C_2 \left(g_3 + s \ C_3 + g_m \right) \\ D(s) &= g_1 \ g_3 + s \ [C_1 \ g_3 + g_1 \ (C_2 + C_3) + C_2 \ (g_m + g_3)] + s^2 \ [C_1 \ (C_2 + C_3) + C_2 \ C_3] \end{aligned}$$

Normalizzando rispetto al primo termine (moltiplicando tutto per R1 R3), si ha:

. .

$$D(s) = \frac{1 + s [C_1 R_1 + R_3 (C_2 + C_3) + g_m R_1 R_3 C_2 + C_2 R_1] + s^2 [C_1 (C_2 + C_3) + C_2 C_3] R_1 R_3}{R_1 R_3}$$

Supponiamo, per semplificare i calcoli, che ci sia una situazione di polo dominante, cioè:

$$D(s) = (s - p_1) (s - p_2) = \left(1 - \frac{s}{p_1}\right) \left(1 - \frac{s}{p_2}\right) p_1 p_2 = 1 - s \left(\frac{1}{p_1} + \frac{1}{p_2}\right) + \frac{s^2}{p_1 p_2}$$

Poiché p₁<<p₂, la precedente relazione si semplifica nel seguente modo:

$$D(s) \approx 1 - \frac{s}{p_1} + \frac{s^2}{p_1 p_2}$$

Dal confronto con la funzione D(s) parametrizzata si ottengono i due poli.

$$p_1 = - \frac{R_1 R_3}{C_1 R_1 + R_3 (C_2 + C_3) + g_m R_1 R_3 C_2 + C_2 R_1}$$

Poiché il contributo dominante è dovuto all'effetto Miller su C_{μ} del transitor Q1, il polo p_1 può essere approssimato nel seguente modo:

$$p_1 \approx - \frac{R_1 R_3}{g_m R_1 R_3 C_2} = - \frac{1}{g_m C_2}$$

$$p_{2} = \frac{\underline{R_{1}R_{3}}}{p_{1} [C_{1} (C_{2} + C_{3}) + C_{2}C_{3}] \underline{R_{1}R_{3}}} = -\frac{g_{m}C_{2}}{C_{1} (C_{2} + C_{3}) + C_{2}C_{3}}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

Consideriamo lo stadio amplificatore MOSFET di figura 92 dove è possibile notare uno stadio differenziale di ingresso costituito da M1 e M2 con carico attivo costituito da M3 e M4 e uno stadio finale di guadagno costituito da M5.

Il calcolo della funzione di trasferimento complessiva può essere svolto suddividendo il circuito in tre blocchi come mostrato nella figura 93.

Analizziamo il circuito considerando la parte di circuito a sinistra della X, cioè lo stadio differenziale con carico attivo costituito da M1, M2, M3 e M4 e quindi la transconduttanza del primo stadio. Quello che ci interessa è una transconduttanza di corto circuito per cui l'analisi si svolge mediante lo schema di figura 94, con i drains di M2 e M4 collegati a massa.

Nella figura 95 viene riportato il modello a grandi segnali di un transistor MOSFET generico.

figura 95 - Modello a grandi segnali di un transistor in tecnologia MOS

Calcoliamo quindi l'ammettenza vista da M1 guardando dentro M3 e M4, analizzando lo schema di figura 97. La funzione di trasferimento dello stadio relativo a M1, M3 e M4 può essere scomposto a sua volta come in figura 96.

figura 97- Circuito per il calcolo dell'ammettenza vista dal transistor M1

Per il calcolo dell'ammettenza vista guardando dentro M3³, utilizziamo lo schema di figura 98 dove è possibile notare la presenza di un generatore di tensione di prova V_x . Dall'analisi segue che:

$$V_{GS3} = V_x$$

$$I_x = V_x (g_{DS3} + s C_{GS3}) + g_{m3} V_x = V_x (g_{DS3} + g_{m3} + s C_{GS3})$$

Quindi l'ammettenza vista guardando dentro M3 è data da:

$$Y_{IN3} = \frac{I_x}{V_x} = g_{DS3} + g_{m3} + s C_{GS3}$$

figura 98 - Circuito per il calcolo dell'ammettenza vista guardando in M3

Per il calcolo dell'ammettenza vista guardando dentro M4 invece, consideriamo il circuito a parametri y di figura 99.

 ³ Si utilizzano i parametri ammettenza. La capacità C_{GD3} viene esclusa in quanto gate e drain sono allo stesso potenziale.
 Michele Marino – mmelectronics@tim.it
 90
 Elettronica analogica con applicazioni
 Università degli studi di Roma "La Sapienza"
 Prof. Alessandro Trifiletti

Dall'analisi del circuito segue che:

$$V_{GS4} = V_x$$

$$I_x = s C_{GS4} V_x + s C_{GD4} V_x = V_x [s (C_{GS4} + C_{GD4})]$$

Quindi l'ammettenza vista guardando dentro M4 è data da:

$$Y_{IN4} = \frac{I_x}{V_x} = s (C_{GS4} + C_{GD4})$$

In conclusione, l'ammettenza vista dal drain di M1, è data da:

 $Y_{L1} = Y_{IN3} + Y_{IN4} = g_{DS3} + g_{m3} + s (C_{GS3} + C_{GS4} + C_{GD4}) \approx g_{m3} + 2 s C_{GS3} = G_0 + s C_0$ Nella figura 100 viene riportato lo schema a parametri y relative al transistor M1 dove si è

omesso, per semplicità, il fattore ½ nel generatore di tensione di ingresso.

Trasformiamo il circuito di figura 100 nel circuito equivalente mostrato nella figura 101.

figura 101 - Circuito equivalente a parametri y

dove i parametri y sono così definiti:

$$\begin{split} Y_1 &= s \ C_{GD1} \\ Y_2 &= g_{DS1} + Y_{L1} = g_{DS1} + g_{m3} + 2 \ s \ C_{GS3} \approx Y_{L1} \\ Y_3 &= s \ C_{GS1} \end{split}$$

Nel seguito considereremo Y₃ trascurabile, cioè un circuito aperto. Dall'analisi dello schema di figura 101, si ha:

$$(V_i - V_o) Y_1 = g_m V_i + Y_2 V_o$$

Riordinando si ottiene:

$$V_{i} (Y_{1} - g_{m}) = V_{o} (Y_{1} + Y_{2})$$
$$I_{o} = -Y_{2} V_{o}$$
$$V_{i} (Y_{1} - g_{m}) = -I_{o} \left(\frac{Y_{1}}{Y_{2}} + 1\right)$$

In definitiva l'ammettenza vista guardando dentro il transistor M1 è data da:

$$Y_{IN1} = \frac{I_o}{V_i} = -\frac{Y_1 - g_{m1}}{\left(\frac{Y_1}{Y_2} + 1\right)} = -\frac{Y_2 (Y_1 - g_{m1})}{Y_1 + Y_2} \approx -\frac{Y_{L1} (Y_1 - g_{m1})}{Y_1 + Y_2}$$

$$Y_{\rm IN1} = \frac{I_{\rm o}}{V_{\rm i}} = -\frac{(g_{\rm m3} + 2 \, {\rm s} \, C_{\rm GS3}) \, ({\rm s} \, C_{\rm GD1} - g_{\rm m1})}{g_{\rm m3} + {\rm s} \, (2 \, C_{\rm GS3} + C_{\rm GD1})} = g_{\rm m1} \, \frac{\left(1 + \frac{2 \, {\rm s} \, C_{\rm GS3}}{g_{\rm m3}}\right) \, \left(1 - \frac{{\rm s} \, C_{\rm GD1}}{g_{\rm m1}}\right)}{1 + {\rm s} \left(\frac{C_{\rm GD3} + C_{\rm GD1}}{g_{\rm m3}}\right)}$$

Abbiamo così ottenuto l'ammettenza di ingresso Y_{IN} dello stadio amplificatore composto da M1, M2, M3 e M4.

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

La funzione di trasferimento del transistor M1 è data da:

$$\frac{V_{o}}{V_{i}} = \frac{V_{G4}}{V_{G1}} = \frac{Y_{1} - g_{m1}}{Y_{1} + Y_{2}} = \frac{s C_{GD1} - g_{m1}}{g_{m3} + s (2 C_{GS3} + C_{GD1})} = -\frac{g_{m1}}{g_{m3}} - \frac{1 - \frac{s C_{GD1}}{g_{m1}}}{1 + 2s \left(\frac{C_{GS3} + C_{GD1}}{g_{m3}}\right)}$$

dove si può notare la presenza di uno zero a frequenza elevata, in genere trascurabile perché fuori banda. Consideriamo ora il contributo di corrente del MOS M2 sulla porta di uscita mediante il circuito di figura 102 dove anche in questo caso, abbiamo trascurato il fattore ½ nel generatore di tensione di ingresso.

figura 102 – Circuito equivalente a parametri y per il transistor M2

 $I_0 = -g_{m2} V_i + s C_{GD2} V_i = V_i (s C_{GD2} - g_{m2})$

L'ammettenza vista guardando dentro M2 è data da:

$$Y_{IN2} = \frac{I_o}{V_i} = -g_{m2} + s C_{GD2}$$

Osservando la figura 92, la corrente di uscita nel punto X, è data da⁴:

$$I_{out} = I_{D4} - I_{D2} = \left(\frac{I_{D4}}{V_{G4}}\right) V_{G4} - \left(\frac{I_{D2}}{V_{i^{+}}}\right) V_{i^{+}} = -g_{m4} V_{G4} - g_{m2} V_{i^{+}}$$

In realtà i due contributi alla corrente di uscita si sommano in quanto, in modo differenziale, le tensioni agli ingressi sono opposte e quindi danno luogo, nel caso in cui M3 e M4 siano uguali, a due contributi di segno uguale.

Dalle relazioni mostrate precedentemente sappiamo che:

 4 Per semplicità di calcolo poniamo $V_i=\pm$ $\frac{1}{2}$ $V_{id}.$ Michele Marino – mmelectronics@tim.it

Università degli studi di Roma "La Sapienza"

$$V_{G4} = -V_{G1} \frac{g_{m1}}{g_{m3}} \frac{1 - \frac{s C_{GD1}}{g_{m1}}}{1 + 2s \left(\frac{C_{G33} + C_{GD1}}{g_{m3}}\right)} \approx -V_{\tilde{1}} \frac{g_{m1}}{g_{m3}} \frac{1 - \frac{s C_{G31}}{s C_{G31}}}{1 + 2s \frac{C_{G33}}{g_{m3}}} \approx -V_{\tilde{1}} \frac{g_{m1}}{g_{m3}} \frac{1}{1 + 2s \frac{C_{G33}}{g_{m3}}} \frac{1}{1 + 2s \frac{C_{G33}}{g_{m3}}}$$

Quindi la corrente di uscita è data da:

$$I_{out} = -g_{m4} V_{G4} - g_{m2} V_{i^{+}} = \frac{g_{m4} g_{m1}}{g_{m3}} \frac{V_{i^{-}}}{1 + 2 s \frac{C_{G33}}{g_{m3}}} - g_{m2} V_{i^{+}}$$

Poiché i transistor M3 e M4 sono uguali $g_{m3} e g_{m4}$ nella relazione precedente si elidono, ed essendo $V_{i^-} = -\frac{1}{2} V_{id} e V_{i^+} = \frac{1}{2} V_{id}$, si ha:

$$I_{out} = -\left(\frac{V_{id}}{2}\right) \left(\frac{g_{m1}}{1+2s\frac{C_{GS3}}{g_{m3}}} + g_{m2}\right) = -\left(\frac{V_{id}}{2}\right) \left[\frac{g_{m1} + g_{m2}\left(1+2s\frac{C_{GS3}}{g_{m3}}\right)}{1+2s\frac{C_{GS3}}{g_{m3}}}\right]$$

Essendo a loro volta anche i transistor M1 e M2 uguali si ha:

$$g_{m1} = g_{m2} = g_{m12}$$

$$I_{out} = -\left(\frac{V_{id}}{2}\right) \left[\frac{g_{m12}\left(2+2s\frac{C_{GS3}}{g_{m3}}\right)}{1+2s\frac{C_{GS3}}{g_{m3}}}\right] = -V_{id} \left[\frac{g_{m12}\left(1+s\frac{C_{GS3}}{g_{m3}}\right)}{1+2s\frac{C_{GS3}}{g_{m3}}}\right]$$

In definitiva, la transconduttanza dello stadio formato da M1, M2, M3 e M4 è data da:

$$TC_{14}(s) = \frac{I_{out}}{V_{id}} = -g_{m12} \left[\frac{1 + s \frac{C_{GS3}}{g_{m3}}}{1 + 2 s \frac{C_{GS3}}{g_{m3}}} \right]$$

figura 103 – Diagramma di Bode qualitativo della transconduttanza dello stadio differenziale

Osservando lo schema di figura 92 si nota che il percorso di reazione non è limitato in banda mentre la parte restante, cioè la coppia differenziale, è limitata in banda dallo specchio di corrente e quindi dalla capacità parassita di carica e scarica dei gate di M3 e M4. Analizziamo ora lo stadio finale (secondo stadio) formato dal transistor M5 considerando anche per questo la rappresentazione a parametri y riportata nella figura 104.

figura 104 - Modello a parametri y per il transistor M5

L'analisi del circuito viene eseguita collegando un generatore di corrente di prova in ingresso e definendo i parametri Y_1 , Y_2 e Y_3 come segue:

$$Y_1 = g_{01} + s C_{GS5}$$

$$Y_2 = S (C_{GD5} + C_C) \approx S C_C$$

$$Y_3 = g_{02} + g_{DS5} + s C_L \approx g_{02} + s C_L$$

Il circuito di figura 104 si modifica in quello di figura 105.

figura 105 - Circuito equivalente a parametri y del transistor M5

Al nodo di ingresso si ha:

$$I_i = Y_1 V_i + Y_2 (V_i - V_o)$$

dalla quale riordinando:

$$I_i = V_i (Y_1 + Y_2) - Y_2 V_0$$

Al nodo di uscita si ha:

$$Y_2 (V_i - V_o) = g_{m5} V_{GS5} + Y_3 V_o = g_{m5} V_i + Y_3 V_o$$

dalla quale riordinando:

$$V_{i} (Y_{2} - g_{m5}) = V_{o} (Y_{2} + Y_{3})$$
$$V_{i} = V_{o} \frac{Y_{2} + Y_{3}}{Y_{2} - g_{m5}}$$

Sostituendo questa nella relazione relativa al nodo di gate, si ha:

$$I_{i} = V_{o} \frac{(Y_{1} + Y_{2})(Y_{2} + Y_{3})}{(Y_{2} - g_{m5})} - Y_{2}V_{o} = V_{o} \left[\frac{(Y_{1} + Y_{2})(Y_{2} + Y_{3}) - Y_{2}(Y_{2} - g_{m5})}{(Y_{2} - g_{m5})} \right]$$

Si ottiene quindi la transimpedenza dello stadio di uscita:

$$\mathsf{TZ}_{5}(\mathbf{s}) = \frac{(Y_{2} - g_{n5})}{(Y_{1} + Y_{2})(Y_{2} + Y_{3}) - Y_{2}(Y_{2} - g_{n5})} = \frac{(Y_{2} - g_{n5})}{Y_{1}Y_{2} + Y_{1}Y_{3} + Y_{2}Y_{3} + g_{n5}Y_{2}} = \frac{(Y_{2} - g_{n5})}{Y_{1}(Y_{2} + Y_{3}) + Y_{2}(Y_{3} + g_{n5})}$$

Definiamo le seguenti quantità e sostituiamo i relativi valori dei parametri y:

$$N(s) = Y_2 - g_{m5} = s C_C - g_{m5} = -g_{m5} \left(1 - \frac{s C_C}{g_{m5}}\right)$$
$$D(s) = (g_{o1} + s C_{GS5}) [g_{02} + s (C_C + C_L)] + s C_C (g_{o2} + g_{m5} + s C_L)$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

 $D(s) = g_{o1} g_{o2} + s [g_{o2} C_{GS5} + g_{o1} (C_C + C_L) + g_{m5} C_C] + s^2 (C_{GS5} C_C + C_{GS5} C_L + C_C C_L)$ Moltiplicando e dividendo per R_{o1} R_{o2}, si ottiene:

$$D(s) = \frac{1 + s [R_{o1} C_{GS5} + R_{o2} (C_{C} + C_{L}) + g_{m5} C_{C} R_{o1} R_{o2}] + s^{2} [C_{C} (C_{GS5} + C_{L}) + C_{GS5} C_{L}] R_{o1} R_{o2}}{R_{o1} R_{o2}}$$

Il guadagno di tensione complessivo dello stadio, in bassa frequenza, è dato da:

$$A_{vd}(0) = [TC_{14}(0)] [TZ_5(0)] = (-g_{m12}) (-g_{m5} R_{01} R_{02}) = g_{m12} g_{m5} R_{01} R_{02}$$

Supponiamo, per semplificare i calcoli, che ci sia una situazione di polo dominante, cioè:

$$D(s) = (s - p_1) (s - p_2) = \left(1 - \frac{s}{p_1}\right) \left(1 - \frac{s}{p_2}\right) p_1 p_2 = 1 - s \left(\frac{1}{p_1} + \frac{1}{p_2}\right) + \frac{s^2}{p_1 p_2}$$

Se $p_1 << p_2$, la precedente relazione si semplifica nel seguente modo:

$$D(s) \approx 1 - \frac{s}{p_1} + \frac{s^2}{p_1 p_2}$$

Dal confronto con la funzione D(s) parametrizzata si ottengono i due poli:

$$p_1 = - \frac{R_{o1} R_{o2}}{R_{o1} C_{GS5} + R_{o2} (C_C + C_L) + g_{m5} C_C R_{o1} R_{o2}}$$

Poiché il contributo dominante è dovuto all'ultimo termine al denominatore, il polo p₁ può essere approssimato nel seguente modo:

$$p_{1} \approx -\frac{R_{01}R_{02}}{g_{m5}C_{C}R_{0T}R_{02}} = -\frac{1}{g_{m5}C_{C}}$$

$$p_{2} = \frac{1}{p_{1}[C_{C}(C_{GS5}+C_{L})+C_{GS5}C_{L}]} = -\frac{g_{m5}C_{C}}{C_{C}(C_{GS5}+C_{L})+C_{GS5}C_{L}}$$

Poiché il contributo dominante è dovuto al primo termine al denominatore, il polo p₂ può essere approssimato nel seguente modo:

$$p_2 \approx - \frac{g_{m5} \zeta \dot{c}}{\zeta \dot{c} (C_{GS5} + C_L)} = - \frac{g_{m5}}{C_{GS5} + C_L}$$

Il guadagno dello stadio nel dominio della frequenza è dato da:

$$A_{vd}(s) = [TC_{14}(s)] [TZ_5(s)]$$

$$A_{vd}(s) = g_{m12} g_{m5} R_{o1} R_{o2} \left[\frac{\left(1 - \frac{s C_C}{g_{m5}}\right) \left(1 + \frac{s C_{GS3}}{g_{m3}}\right)}{\left(1 + \frac{2 s C_{GS3}}{g_{m3}}\right) \left(1 + s g_{m5} C_C\right) \left(1 + \frac{s (C_{GS5} + C_L)}{g_{m5}}\right)} \right]$$

lo trascuriamo per ora

$$A_{vd}(s) = A_{vd}(0) \left[\frac{\left(1 - \frac{s C_{c}}{g_{m5}}\right)}{(1 + s g_{m5} C_{c}) \left(1 + \frac{s (C_{GS5} + C_{L})}{g_{m5}}\right)} \right]$$

Definiamo il parametro ω_u come segue:

 $\omega_{u} = A_{vd}(0) p_{1}$

Questo rappresenta la frequenza alla quale il modulo del diagramma di Bode dello stadio amplificatore attraversa l'asse delle ascisse trascurando la presenza del secondo polo e dello zero (frequenza di attraversamento). Quindi rappresenta la frequenza di riferimento oltre la quale andare a posizionare il secondo polo e lo zero.

$$\omega_{\rm u} = \frac{g_{m12} g_{m5} R_{01} R_{02}}{g_{m5} C_{\rm C}} = \frac{g_{m12} R_{01} R_{02}}{C_{\rm C}}$$

Definiamo inoltre le quantità:

$$\left|\frac{z}{\omega_{\rm u}}\right| = \frac{\zeta_{\rm C}}{g_{\rm m12} R_{\rm o1} R_{\rm o2}} - \frac{g_{\rm m5}}{\zeta_{\rm C}} = \frac{g_{\rm m5}}{g_{\rm m12} R_{\rm o1} R_{\rm o2}}$$

$$\left|\frac{p_2}{\omega_u}\right| = \frac{C_C}{g_{m12} R_{o1} R_{o2}} \quad \frac{g_{m5}}{C_{GS5} + C_L} = \left|\frac{z}{\omega_u}\right| \frac{C_C}{C_{GS5} + C_L}$$

le quali permettono di scalare la posizione del polo e dello zero.

Analizziamo ora il comportamento dello stadio amplificatore MOSFET rispetto ai segnali di modo comune partendo dallo schema di figura 107 dove è possibile notare che il segnale v_i^{CM} viene applicato ad entrambi gli ingressi.

figura 107 - Stadio differenziale con segnale applicato di modo comune

Come prima considereremo i circuiti per il calcolo delle ammettenze e delle funzioni di trasferimento, questa volta con il segnale v_i^{CM} su entrambi gli ingressi come mostrato nella figura 108 dove è stata sdoppiata l'impedenza dello specchio di corrente in basso.

Per quanto riguarda il calcolo della funzione di trasferimento relativa a M1, M3 e M4, consideriamo lo schema di figura 109.

Il modello a parametri y per il transistor M1 è mostrato nella figura 110, dove risulta inclusa anche l'ammettenza Y_{L1} vista dallo stesso guardando verso M3 e M4, calcolata precedentemente. I parametri y semplificati sono così definiti:

$$Y_1 = S C_{GS1}$$

$$\begin{split} Y_2 &= s \ C_{GD1} \\ Y_3 &= g_{DS1} \\ Y_S &= G_S + s \ C_S \end{split}$$

Dall'analisi del circuito, al nodo di drain, si ha:

$$(V_i - V_o) Y_2 = (V_o - V_{S1}) Y_3 + g_{m1} (V_i - V_{S1}) + V_o Y_L$$

dalla quale riordinando:

$$V_i (Y_2 - g_{m1}) - V_o (Y_2 + Y_3 + Y_L) = - V_{S1} (Y_3 + g_{m1})$$

Al nodo di gate, si ha:

$$(V_i - V_{S1}) Y_1 + g_{m1} (V_i - V_{S1}) + (V_o - V_{S1}) Y_3 = V_{S1} Y_S$$

Dalla quale riordinando:

$$V_i (Y_1 + g_{m1}) + V_o Y_3 = V_{S1} (Y_1 + g_{m1} + Y_3 + Y_S)$$

$$V_{S1} = \frac{V_i (Y_1 + g_{m1}) + V_o Y_3}{Y_1 + g_{m1} + Y_3 + Y_S}$$

Sostituendo questa nella relazione riordinata relativa al nodo di drain, si ottiene:

$$V_{i} (Y_{2} - g_{m1}) - V_{o} (Y_{2} + Y_{3} + Y_{L}) = - (Y_{3} + g_{m1}) \left[\frac{V_{i} (Y_{1} + g_{m1}) + V_{o} Y_{3}}{Y_{1} + g_{m1} + Y_{3} + Y_{S}} \right]$$

$$V_i (Y_2 - g_{m1}) (Y_1 + g_{m1} + Y_3 + Y_5) - V_o (Y_2 + Y_3 + Y_L) (Y_1 + g_{m1} + Y_3 + Y_5) =$$

= - (Y_3 + g_{m1}) [V_i (Y_1 + g_{m1}) + V_o Y_3]

Riordinando e risolvendo si ha:

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza"

$$V_{i} [(Y_{2} - g_{m1}) (Y_{1} + g_{m1} + Y_{3} + Y_{5}) + (Y_{3} + g_{m1}) (Y_{1} + g_{m1})] = V_{0} [(Y_{2} + Y_{3} + Y_{L}) (Y_{1} + g_{m1} + Y_{3} + Y_{5}) - (Y_{3} + g_{m1}) Y_{3}]$$

$$V_{i} (Y_{1} Y_{2} + g_{m1} Y_{2} + Y_{2} Y_{3} + Y_{2} Y_{S} - g_{m1} Y_{S} + Y_{1} Y_{3}) = V_{o} (Y_{1} Y_{2} + g_{m1} Y_{2} + Y_{2} Y_{3} + Y_{2} Y_{S} + Y_{1} Y_{3} + Y_{3} Y_{S} + Y_{1} Y_{L} + g_{m1} Y_{L} + Y_{3} Y_{L} + Y_{L} Y_{S})$$

$$V_{i} \left[Y_{2} \left(Y_{1} + Y_{3} + Y_{3} \right) + g_{m1} \left(Y_{2} - Y_{S} \right) + Y_{1} Y_{3} \right] = V_{o} \left(Y_{1} Y_{2} + g_{m1} Y_{2} + Y_{2} Y_{3} + Y_{2} Y_{S} + Y_{1} Y_{3} + Y_{3} Y_{S} + Y_{1} Y_{L} + g_{m1} Y_{L} + Y_{3} Y_{L} + Y_{L} Y_{S} \right)$$

Si ottiene quindi la seguente funzione di trasferimento:

$$\frac{V_o}{V_i} = \frac{Y_2 (Y_1 + Y_3 + Y_S) + g_{m1} (Y_2 - Y_S) + Y_1 Y_3}{Y_1 Y_2 + g_{m1} Y_2 + Y_2 Y_3 + Y_2 Y_S + Y_1 Y_3 + Y_3 Y_S + Y_1 Y_L + g_{m1} Y_L + Y_3 Y_L + Y_L Y_S}$$

Dallo schema di figura ? segue che:

$$\mathbf{I}_{out} = -\mathbf{V}_{o} \mathbf{Y}_{L} = -\frac{\mathbf{V}_{o}}{\mathbf{V}_{i}} \mathbf{V}_{i} \mathbf{Y}_{L}$$

Dalla precedente di ottiene la transconduttanza dello stadio in modo comune:

$$TC^{CM} = \frac{I_{out}}{V_i} = -\frac{V_o}{V_i} Y_L$$

$$TC^{CM} = -\left(\frac{Y_2(Y_1 + Y_3 + Y_5) + g_{m1}(Y_2 - Y_5) + Y_1Y_3}{Y_1Y_2 + g_{m1}Y_2 + Y_2Y_3 + Y_2Y_5 + Y_1Y_3 + Y_3Y_5 + Y_1Y_L + g_{m1}Y_L + Y_3Y_L + Y_LY_5}\right)Y_L$$

Supponendo che $Y_{L} \rightarrow \infty$, le precedente relazione si semplifica nel seguente modo:

$$\lim_{Y_{L}\to\infty} TC^{CM} = -\left(\frac{Y_{2}(Y_{1} + Y_{3} + Y_{S}) + g_{m1}(Y_{2} - Y_{S}) + Y_{1}Y_{3}}{Y_{1} + Y_{3} + Y_{S} + g_{m1}}\right)$$

dalla quale, sostituendo i valori dei parametri y, si ha:

$$TC^{CM} = -\left(\frac{g_{m1}G_{S} - s \left[C_{GD1} \left(G_{S} + g_{DS1}\right) + g_{m1} \left(C_{GD1} - C_{S}\right) + C_{GS1} g_{DS1}\right] - s^{2} C_{GD1} \left(C_{S} + C_{GS1}\right)}{g_{m1} + g_{DS1} + G_{S} + s \left(C_{GS1} + C_{S}\right)}\right)$$

In alta frequenza c'è passaggio di corrente attraverso la capacità parassita e oltre una certa

frequenza c'è un aumento del guadagno per la presenza degli zeri nella funzione.

In bassa frequenza, supponendo g_{m1} grande rispetto agli altri termini, si ha:

$$TC^{CM}(0) = -\left(\frac{g_{m1}G_S}{g_{m1} + g_{DS1} + G_S}\right) \approx -G_S$$

dove G_S rappresenta la conduttanza di uscita dello specchio di corrente.

Consideriamo il numeratore della funzione TC^{CM} così definito:

 $N(s) = -[g_{m1} G_S - s [C_{GD1} (G_S + g_{DS1}) + g_{m1} (C_{GD1} - C_S) + C_{GS1} g_{DS1}] - s^2 C_{GD1} (C_S + C_{GS1})]$ Normalizzando rispetto al primo termine, si ha:

$$N(s) = -g_{m1}G_{S}\left(1 - \frac{s\left[C_{GD1}(G_{S} + g_{DS1}) + g_{m1}(C_{GD1} - C_{S}) + C_{GS1}g_{DS1}\right] + s^{2}C_{GD1}(C_{S} + C_{GS1})}{g_{m1}G_{S}}\right)$$

Consideriamo la seguente scomposizione per N(s):

$$N(s) = (s - z_1)(s - z_2) = \left(1 - \frac{s}{z_1}\right)\left(1 - \frac{s}{z_2}\right)z_1z_2 = 1 - s\left(\frac{1}{z_1} + \frac{1}{z_2}\right) + \frac{s^2}{z_1z_2}$$

Utilizzando l'approssimazione di zero dominante, supponendo cioè $z_1 << z_2$, si ha la seguente approssimazione:

N(s)
$$\approx 1 - \frac{s}{z_1} + \frac{s^2}{z_1 z_2}$$

Confrontando con l'espressione a parametri y di N(s) calcolata prima, si ha:

$$z_1 = \frac{g_{m1} G_S}{C_{GD1} (G_S + g_{DS1}) + g_{m1} (C_{GD1} - C_S) + C_{GS1} g_{DS1}}$$

Poiché il termine al denominatore comprendente g_{m1} è più grande degli altri, si lo zero dominante approssimato nel seguente modo:

$$z_{\rm D} \approx \frac{g_{\rm m1} G_{\rm S}}{g_{\rm m1} (C_{\rm GD1} - C_{\rm S})} = \frac{G_{\rm S}}{C_{\rm GD1} - C_{\rm S}}$$

Il secondo zero, non dominante, è dato da:

$$z_{2} = -\frac{g_{m1}G_{S}}{z_{D}[C_{GD1}(C_{S} + C_{GS1})]} = -\left(\frac{g_{m1}G_{S}}{C_{GD1}(C_{S} + C_{GS1})}\right)\left(\frac{g_{m1}(C_{GD1} - C_{S})}{g_{m1}G_{S}}\right) = -g_{m1}\frac{(C_{GD1} - C_{S})}{C_{GD1}(C_{S} + C_{GS1})}$$

Riportiamo infine il guadagno di corrente dello stadio che è composto da due termini, cioè quello relativo al transistor M2 che è circa uno e quello relativo ai transistor M3 e M4, dato da:

$$A_{I34} = \frac{1}{1 + 2 s \frac{C_{G53}}{g_{m3}}}$$

La funzione di trasferimento complessiva è dato da:

$$A_{I} = A_{I2} - A_{I34} = 1 - \frac{1}{1 + 2s \frac{C_{GS3}}{g_{m3}}} = \frac{\frac{2s C_{GS3}}{g_{m3}}}{1 + 2s \frac{C_{GS3}}{g_{m3}}}$$

Effetti delle asimmetrie nella cella differenziale standard

Analizziamo ora gli effetti dovuti alle asimmetrie dei transistor in una cella differenziale standard, cioè le asimmetrie relative ai parametri β e V_T che rappresentano i parametri tecnologici in grado di alterare le informazioni in bassa frequenza.

figura 111 - Cella differenziale standard in assenza di segnale in ingresso

Consideriamo dapprima le asimmetrie sui β dei transistor M1 e M2 e quindi, dall'analisi del circuito di figura 112, si ha:

$$I_{D1} = \beta_1 (V_{GS1} - V_T)^2$$

figura 112 - Stadio differenziale di ingresso

$$V_{GS} = V_{GS1} = V_{GS2} = V_T + \sqrt{\frac{I_{SS}}{\beta_1 + \beta_2}}$$

Definiamo i parametri β come segue, introducendo lo scarto $\Delta\beta$:

$$\beta_1 = \beta + \frac{\Delta\beta}{2}$$
$$\beta_2 = \beta - \frac{\Delta\beta}{2}$$

Sostituendo nelle relazioni relative alle correnti di drain, si ha:

$$\begin{split} I_{\text{D1}} &= (\beta + \Delta \beta) \; (\mathsf{V}_{\text{GS1}} - \mathsf{V}_{\text{T}})^2 \\ I_{\text{D2}} &= (\beta - \Delta \beta) \; \; (\mathsf{V}_{\text{GS2}} - \mathsf{V}_{\text{T}})^2 \end{split}$$

e sostituendo in queste ultime il valore relativo a V_{GS1} e V_{GS2} , si ha:

$$I_{D1} = \frac{\beta + \Delta\beta}{\beta_1 + \beta_2} I_{SS} = \frac{\beta + \Delta\beta}{2\beta} I_{SS}$$
$$I_{D2} = \frac{\beta - \Delta\beta}{\beta_1 + \beta_2} I_{SS} = \frac{\beta - \Delta\beta}{2\beta} I_{SS}$$

Otteniamo infine il seguente rapporto che risulta utile per descrivere il trasferimento di segnale e la dinamica dello stadio:

Consideriamo ora il circuito di figura 112 per un ingresso differenziale Vid:

$$\begin{split} I_{D1} &= \beta \; (V_{GS1} - V_{T1})^2 \; (1 + \lambda \; V_{DS1}) \\ I_{D2} &= \beta \; (V_{GS2} - V_{T2})^2 \; (1 + \lambda \; V_{DS2}) \\ I_{SS} &= I_{D1} + I_{D2} \\ V_{id} &= V_{GS1} - V_{GS2} \end{split}$$

fattore di over drive: $V_{OV} = V_{GS} - V_T$

Quindi si hanno le seguenti tensioni di soglia:

$$V_{GS1} = V_{T1} + \sqrt{\frac{I_{D1}}{\beta}}$$
$$V_{GS2} = V_{T2} + \sqrt{\frac{I_{D2}}{\beta}}$$

Supponendo che i transistor siano uguali, si ha:

$$V_{id} = \sqrt{\frac{I_{D1}}{\beta}} - \sqrt{\frac{I_{D2}}{\beta}} = \sqrt{\frac{I_{D1}}{\beta}} - \sqrt{\frac{I_{SS} - I_{D1}}{\beta}}$$

Quadrando una prima volta la relazione precedente si ha:

$$\beta V_{id^2} = I_{D1} + (I_{SS} - I_{D1}) - 2 \sqrt{I_{D1} (I_{SS} - I_{D1})}$$

Quadrando nuovamente si ha:

$$(\beta V_{id^2} - I_{SS})^2 = 4 I_{D1} I_{SS} - 4 I_{D1^2}$$

Si ottiene così un'equazione di secondo grado in ID1:

$$4 I_{D1^2} - 4 I_{D1} I_{SS} + (\beta V_{id^2} - I_{SS})^2 = 0$$

le cui soluzioni sono date da:

$$I_{D1} = \frac{4 I_{SS} \pm \sqrt{16 I_{SS}^2 - 16 (\beta V_{id}^2 - I_{SS})^2}}{8} = \frac{I_{SS}}{2} \pm \frac{1}{2} \sqrt{I_{SS}^2 - I_{SS}^2 - \beta^2 V_{id}^4 + 2\beta V_{id}^2 I_{SS}}$$
$$I_{D1} = \frac{I_{SS}}{2} \pm \frac{1}{2} \sqrt{\beta^2 V_{id}^2 \left(\frac{2 I_{SS}}{\beta} - V_{id}^2\right)} = \frac{I_{SS}}{2} \pm \frac{\beta V_{id}}{2} \sqrt{\frac{2 I_{SS}}{\beta} - V_{id}^2}$$

Se V_{id} è piccolo rispetto agli altri termini, si ha un comportamento lineare per cui la corrente I_{D1} diventa la seguente:

$$I_{D1} \approx \frac{I_{SS}}{2} \pm \frac{\beta V_{id}}{2} \sqrt{\frac{2 I_{SS}}{\beta}}$$

Considerando il valore positivo per le correnti I_{D1} , I_{D2} e introducendo le asimmetrie sulle tensioni di soglia, si ha:

$$\Delta \mathbf{I} = \mathbf{I}_{D1} - \mathbf{I}_{D2} = \beta \Delta \mathbf{V}_{T12} \sqrt{\frac{2 \mathbf{I}_{SS}}{\beta}} = \Delta \mathbf{V}_{T12} \sqrt{2 \mathbf{I}_{SS} \beta}$$

Introduciamo il rapporto:

$$\frac{\Delta I}{I_{SS}} = \Delta V_{T12} \sqrt{\frac{2 J_{SS} \hat{\beta}}{I_{SS}^2}} = \Delta V_{T12} \sqrt{\frac{2 \beta}{I_{SS}}} = \frac{\Delta V_{T12}}{V_{OV12}}$$

definendo la tensione di overdrive V_{OV12} che dipende dai parametri tecnologici dei dispositivi MOSFET. Per quanto riguarda i transistor M3 e M4, consideriamo il circuito di figura 113.

figura 113 - Circuito equivalente del carico attivo per la coppia differenziale

Si ha:

$$V_{GS3} = V_{T3} + \sqrt{\frac{I_{D3}}{\beta_3}} = V_{T3} + \sqrt{\frac{I_{IN}}{\beta_3}}$$
$$I_{D4} = \beta_4 (V_{GS4} - V_{T4})^2 = \beta_4 (V_{T3} + \sqrt{\frac{I_{IN}}{\beta_3}} - V_{T4})^2 = \beta_4 (\Delta V_{T34} + \sqrt{\frac{I_{IN}}{\beta_3}})^2$$

che possiamo approssimare con la relazione:

$$I_{D4} \approx \frac{\beta_4}{\beta_3} I_{IN} (1 + \Delta V_{T34} \sqrt{\frac{\beta_3}{I_{IN}}})^2 = \frac{\beta_4}{\beta_3} I_{IN} (1 + \frac{\Delta V_{T34}}{V_{OV34}})^2$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

Definiamo i nuovi parametri "medi" e di "asimmetria" nel modo seguente:

$$\Delta\beta_{34} = \beta_3 - \beta_4$$
$$\beta_{34} = \frac{\beta_3 + \beta_4}{2}$$

Dai quali, risolvendo rispetto a $\beta_3 e \beta_4$ si ha:

$$\beta_3 = \beta_{34} + \Delta \beta_{34}$$
$$\beta_4 = \beta_{34} - \Delta \beta_{34}$$

Sostituendo nella relazione relativa a I_{D4} si ha:

$$I_{D4} = I_{IN} \left(\frac{\beta_{34} + \Delta \beta_{34}}{\beta_{34} - \Delta \beta_{34}} \right) (1 + \frac{\Delta V_{T34}}{V_{OV34}})^2$$

Utilizzando la seguente approssimazione:

$$\frac{1+x}{1-y} \longrightarrow 1+x-y-xy$$

la corrente I_{D4} è data da:

$$I_{D4} \approx I_{IN} \left(1 + \frac{2\Delta\beta_{34}}{\beta_{34}} \right) (1 + \frac{2\Delta V_{T34}}{V_{OV34}})^2$$

Si noti come sono stati messi in evidenza tutti i parametri che generano le asimmetrie per cui il guadagno completo dell'asimmetria è dato da:

$$\frac{\Delta\beta_{12}}{\beta_{12}} + \frac{\Delta V_{T12}}{V_{OV12}} + \frac{2\Delta\beta_{34}}{\beta_{34}} + \frac{2\Delta V_{T34}}{V_{OV34}}$$

Consideriamo lo schema di figura 114 dove con Z_{SL} abbiamo indicato l'impedenza del generatore di corrente di polarizzazione di M5 e con Z_5 l'impedenza di M5. Si ha:

$$V_{OUT} = \left(\frac{V_{DD} Z_{SL}}{Z_5 + Z_{SL}}\right) + V_{DD} \left(\frac{V_{SG5}}{V_{DD}}\right) g_{m5} \left(\frac{Z_5}{Z_{SL}}\right)$$
$$V_{OUT} = \left(\frac{V_{SS} Z_{SL}}{Z_5 + Z_{SL}}\right) + V_{SS} \left(\frac{V_{SG5}}{V_{SS}}\right) g_{m5} \left(\frac{Z_5}{Z_{SL}}\right)$$

Dal circuito di figura 115, dove al posto di M1 e M2 abbiamo sostituito le resistenza di uscita, si ha:

$$V_{SG5} = V_{DD} - V_{D4}$$

figura 114 - Circuito per il calcolo della tensione di uscita in funzione della tensione V_{DD}

La tensione V_{SG4} è data da:

$$V_{SG4} = V_{DD} - \left(\frac{r_{o1}}{r_{o1} + \frac{1}{g_{m3}}}\right) V_{DD} = V_{DD} \left(1 - \frac{g_{m3} r_{o1}}{1 + g_{m3} r_{o1}}\right) = V_{DD} \left(\frac{1}{1 + g_{m3} r_{o1}}\right)$$

Quindi sostituendo questa nella relazione precedente, supponendo che g_{m3} $r_{o1}>>1$ e $r_{o2}>>r_{o4}$, si ha:

$$V_{D4} = V_{DD} \left[\frac{r_{o2}}{r_{o2} + r_{o4}} + g_{m4} \left(\frac{1}{1 + g_{m3} r_{o1}} \right) (r_{o2} / / r_{o4}) \right] \approx V_{DD} \left[\left(\frac{r_{o2}}{r_{o2} + r_{o4}} \right) \left(1 + \frac{g_{m4}}{g_{m3}} - \frac{r_{o4}}{r_{o1}} \right) \right]$$

Quindi il trasferimento tra l'uscita del primo stadio e la tensione di alimentazione V_{DD} è circa unitario (essendo $r_{o1},r_{o2}>>r_{o4}$). La tensione V_{SG5} è quindi data da:

$$V_{SG5} = V_{DD} - V_{DD} \left[\frac{r_{o2}}{r_{o2} + r_{o4}} \left(1 + \frac{g_{m4}}{g_{m3}} \frac{r_{o4}}{r_{o1}} \right) \right] = V_{DD} \left[\frac{r_{o4} + r_{o2}}{r_{o1} + r_{o2}} - \frac{r_{o2}}{r_{o2} + r_{o4}} \right]$$

Essendo anche in questo caso r_{o1} , r_{o2} >> r_{o4} , segue che $V_{SG5} \approx 0$. Il trasferimento tra la tensione di alimentazione V_{DD} e la tensione di uscita V_{OUT} avviene dunque attraverso le resistenze di uscita di M5 e M6, cioè:

$$\frac{V_{\text{OUT}}}{V_{\text{DD}}} = \frac{r_{\text{o6}}}{r_{\text{o5}} + r_{\text{o6}}} \approx \frac{1}{2}$$

Consideriamo ora il circuito di figura 116 dove in parallelo a r_{o1} e r_{o2} sono stati inseriti due generatori di corrente I_s .

figura 116 - Effetto delle resistenze di uscita dei transistor M1 e M2 con generatori di corrente

Dall'analisi del circuito, la tensione sul gate di M4 è data da:

La tensione VOUT è quindi data da:

$$V_{OUT} = -g_{m4} V_{G4} (r_{o4}//r_{o2}) - (r_{o4}//r_{o2}) I_{S}$$

Sostituendo il valore di V_{G4} calcolato prima, si ha:

$$V_{OUT} = g_{m4} \left(\frac{r_{o1}}{1 + g_{m3} r_{o1}} \right) I_S \left(\frac{r_{o4}}{r_{o2}} \right) = I_S \left[\frac{g_{m4}}{1 + g_{m3} r_{o1}} - 1 \right] \left(\frac{r_{o4}}{r_{o2}} \right)$$

Consideriamo ora l'alimentazione V_{ss} e calcoliamo la tensione di uscita mediante lo schema di figura 117. La tensione sul drain di M4 è data da:

$$V_{D4} = (r_{o2} / r_{o4}) (g_{m4} V_{SG4} - I_S)$$

Mentre la resistenza vista dal gate di M4 è data da:

figura 117 - Circuito per il calcolo della tensione di uscita in funzione della tensione Vss

La tensione sul gate di M3 e quindi sul gate-source di M4 è data da:

Si ottiene così la tensione sul drain di M4:

$$V_{D4} = I_{S} \left(\frac{g_{m4} r_{o1}}{1 + g_{m3} r_{o1}} - 1 \right) \left(\frac{r_{o2}}{r_{o4}} \right) = I_{S} \left(\frac{g_{m4} r_{o1} - 1 - g_{m3} r_{o1}}{1 + g_{m3} r_{o1}} \right) \left(\frac{r_{o2}}{r_{o4}} \right)$$
$$V_{D4} \approx I_{S} \left(\frac{\Delta g_{m43} r_{o1} - 1}{g_{m3} r_{o1}} \right) \left(\frac{r_{o2}}{r_{o4}} \right)$$

Prendiamo di nuovo in considerazione la relazione che esprime la tensione di uscita in funzione della tensione V_{ss} e riscriviamola nel modo seguente:

$$V_{OUT} = \left(\frac{V_{SS} Z_{SL}}{Z_5 + Z_{SL}}\right) \left[1 + \left(\frac{V_{SG5}}{V_{SS}}\right) g_{m5} Z_{SL}\right]$$

essendo:

$$I_{S} = \frac{V_{SS}}{Z_{S}'} = \frac{V_{SS}}{2 Z_{S}}$$

$$\frac{V_{SG5}}{V_{SS}} = \frac{V_{SG5}}{I_S Z_S'} = \frac{V_{D4}}{I_S Z_S'}$$

$$V_{OUT} = \left(\frac{V_{SS} Z_{SL}}{Z_5 + Z_{SL}}\right) \left[1 + \left(\frac{\Delta g_{m43} r_{o1} - 1}{g_{m3} r_{o1}}\right) (r_{o2} / / r_{o4}) \left(\frac{g_{m5} Z_{SL}}{Z_{S'}}\right)\right]$$

Come per il trasferimento della tensione V_{DD} , essendo anche in questo caso $V_{SG5} \approx 0$, la funzione di trasferimento tra la tensione di alimentazione V_{SS} e la tensione di uscita V_{OUT} è definita tramite le resistenze di uscita dei MOS M5 e M6:

$$\frac{V_{OUT}}{V_{SS}} = \frac{r_{o5}}{r_{o5} + r_{o6}} \approx \frac{1}{2}$$

OPA 1S

Nella figura 118 viene riportato lo schema di un amplificatore con ingresso differenziale e carico attivo su entrambi i rami dello stadio di ingresso, definito come OPA 1S.

figura 118 - Schema elettrico dell'OPA 1S

In bassa frequenza il guadagno di tensione è dato da:

$$A_{vd} = g_{m12} (r_{06} / / r_{08})$$

Le correnti I_{D6} e I_{D8} sono date da:

$$I_{D6} = V_{id} \left(\frac{g_{m12}}{2} \right) \left(\frac{1}{1 + j \omega \tau_p} \right)$$

$$I_{D8} = -V_{id} \left(\frac{g_{m12}}{2}\right) \left(\frac{1}{1+j\omega\tau_p}\right) \left(\frac{1}{1+j\omega\tau_n}\right)$$

dove il termine τ_p mette in evidenza il polo dovuto ai MOS a canale p, mentre il termine τ_n mette in evidenza il polo dovuto ai MOS a canale n.

In definitiva la corrente di uscita è data da:

$$I_{OUT} = I_{D6} - I_{D8} = \left(\frac{g_{m12} V_{id}}{2}\right) \left(\frac{1}{1 + j \omega \tau_p} + \frac{1}{(1 + j \omega \tau_p)(1 + j \omega \tau_n)}\right)$$

Dalla quale risolvendo si ha:

$$I_{OUT} = \left(\frac{g_{m12}V_{id}}{2}\right) \left(\frac{1+j\omega\tau_n+1}{(1+j\omega\tau_p)(1+j\omega\tau_n)}\right) = g_{m12}V_{id}\left[\frac{\left(1+\frac{j\omega\tau_n}{2}\right)}{(1+j\omega\tau_p)(1+j\omega\tau_n)}\right]$$

La dinamica di uscita è:

$$\mathsf{D}_{\mathsf{OUT}}: (\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OV6}}) \to (\mathsf{V}_{\mathsf{SS}} + \mathsf{V}_{\mathsf{OV8}})$$

OPA 2S Cascode

Nella figura 119 viene riportato lo schema di un amplificatore con ingresso differenziale e stadio finale a cascode, definito come OPA 2S Cascode.

figura 119 - Schema elettrico dell'OPA 2S Cascode

Dal punto di vista della continua i punti contrassegnati in rosso non si cambiano sensibilmente e la dinamica di uscita è:

$$\mathsf{D}_{\mathsf{OUT}}: (-\mathsf{V}_{\mathsf{SS}} + 2 \mathsf{V}_{\mathsf{OVn}}) \to (\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OVp}})$$

114

Analizziamo lo stadio partendo dal MOS M6 collegato come in figura 121.

 $V_{GS6} = -V_{IN}$

$$I_{IN} = s C_{GS6} V_{IN} + g_{m6} V_{IN} + g_{DS6} V_{IN} = V_{IN} (s C_{GS6} + g_{m6} + g_{DS6})$$

L'ammettenza vista guardando dentro il source di M6 (connesso a gate comune e con uscita a massa) è quindi data da:

$$Y_{\rm IN} = \frac{I_{\rm IN}}{V_{\rm IN}} = s \ C_{\rm GS6} + g_{m6} + g_{\rm DS6} \approx g_{m6} + s \ C_{\rm GS6}$$

Per quanto riguarda il MOS M5 consideriamo il modello a parametri y di figura 122 e procediamo al calcolo dell'impedenza vista dai punti contrassegnati dalle X.

Sommando le correnti al nodo di source si ha:

$$-g_{m5} V_{S5} - Y_1 V_{S5} + Y_3 (V_{D5} - V_{S5}) = Y_S V_S$$

Dalla quale riordinando si ha:

$$V_{D5} Y_3 = V_{S5} (Y_S + Y_3 + Y_1 + g_{m5})$$

IOUT = V_{S5} (Y_S + Y_1)

figura 122 - Circuito equivalente a parametri y per il transistor M5

I parametri y sono così definiti:

$$Y_1 = s C_{GS5}$$
$$Y_3 = g_{DS5}$$
$$Y_S = G_S + s C_S$$

Sostituendo V_{S5} nella prima relazione, poiché $V_{D5} = V_{OUT}$, si ha:

$$V_{OUT} = \left(\frac{I_{OUT}}{Y_{S} + Y_{1}}\right) \left(\frac{Y_{S} + Y_{3} + Y_{1} + g_{m5}}{Y_{3}}\right)$$

L'impedenza di uscita dello stadio amplificatore è quindi data da:

$$Z_{OUT} = \frac{V_{OUT}}{I_{OUT}} = \left(\frac{Y_{S} + Y_{3} + Y_{1} + g_{m5}}{(Y_{S} + Y_{1}) Y_{3}}\right)$$

Sostituendo i valori dei parametri y prima definiti, si ha:

$$Z_{OUT} = \left(\frac{G_{S} + s C_{S} + g_{DS5} + s C_{GS5} + g_{m5}}{g_{DS5} (G_{S} + s C_{S} + s C_{GS5})}\right) = \frac{g_{m5} \left[1 + \frac{s (C_{S} + C_{GS5})}{g_{m5}}\right]}{g_{DS5} G_{S} \left[1 + \frac{s (C_{S} + C_{GS5})}{G_{S}}\right]}$$

Essendo g_{m5} >>1 lo zero al numeratore è trascurabile poiché è ad una frequenza molto più alta del polo. Quindi l'ammettenza complessiva di uscita dello stadio è data da:

Sommando le correnti al nodo di drain di figura 123 si ha:

 $Y_2 (V_i - V_{D8}) = g_{m8} V_i + V_{D8} (Y_3 + Y_4)$

dalla quale riordinando si ottiene:

$$V_i (Y_2 - g_{m8}) = V_{D8} (Y_2 + Y_3 + Y_4)$$

$$\frac{V_{D8}}{V_i} = \frac{Y_2 - g_{m8}}{Y_2 + Y_3 + Y_4}$$

La corrente di uscita è data da:

$$I_{OUT} = - V_{D8} Y_4$$

Utilizzando le ultime due relazioni, si ottiene il trasferimento tra la tensione di ingresso e la corrente di uscita dello stadio successivo:

$$\frac{I_{OUT}}{V_i} = -\frac{V_{D8}}{V_i} Y_4 = -\frac{(Y_2 - g_{m8}) Y_4}{Y_2 + Y_3 + Y_4}$$

dalla quale, sostituendo i parametri y, si ha:

Michele Marino – mmelectronics@tim.it 117 Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

Scriviamo l'equazione al nodo di source:

$$-g_{m7} V_{S7} - Y_1 V_{S7} + Y_3 (V_{D7} - V_{S7}) = I_{IN}$$

Riordinando si ha:

$$V_{D7} Y_3 = V_{S7} (Y_1 + Y_3 + g_{m7}) + I_{IN}$$

L'equazione al nodo di drain è la seguente:

$$-g_{m7} V_{S7} + Y_3 (V_{D7} - V_{S7}) + (Y_4 + Y_2) V_{D7} = 0$$

Riordinando si ha:

$$V_{S7} (g_{m7} + Y_3) = V_{D7} (Y_2 + Y_3 + Y_4)$$
$$V_{S7} = \left(\frac{V_{D7} (Y_2 + Y_3 + Y_4)}{(g_{m7} + Y_3)}\right)$$

Sostituendo nell'equazione relativa al nodo di source si ha:

$$Y_{3} V_{D7} = \left[\frac{V_{D7} (Y_{2} + Y_{3} + Y_{4}) (Y_{1} + Y_{3} + g_{m7})}{(g_{m7} + Y_{3})}\right] + I_{IN}$$
$$V_{D7} \left[\frac{Y_{3} (g_{m7} + Y_{3}) - (Y_{2} + Y_{3} + Y_{4}) (Y_{1} + Y_{3} + g_{m7})}{(g_{m7} + Y_{3})}\right] = I_{IN}$$

$$V_{D7} \left[\frac{-Y_1 Y_3 - (Y_2 + Y_4) (Y_1 + Y_3 + g_{m7})}{(g_{m7} + Y_3)} \right] = I_{IN}$$

Si ottiene la seguente funzione di trasferimento:

$$\frac{V_{D7}}{I_{IN}} = \frac{(g_{m7} + Y_3)}{-Y_1 Y_3 - (Y_2 + Y_4) (Y_1 + Y_3 + g_{m7})}$$

Essendo I_{OUT} = - V_{D7} Y₄, si ottiene facilmente il guadagno di corrente dello stadio:

$$\frac{I_{OUT}}{I_{IN}} = \frac{Y_4 (g_{m7} + Y_3)}{Y_1 Y_3 + (Y_2 + Y_4) (Y_1 + Y_3 + g_{m7})}$$

Se $Y_4 \rightarrow \infty$, che dal punto di vista elettrico equivale ad un cortocircuito, si ha:

$$A_{I} = \frac{I_{OUT}}{I_{IN}} = \frac{g_{m7} + Y_{3}}{Y_{1} + Y_{3} + g_{m7}}$$

Sostituendo i valori dei parametri y si ha:

$$A_{\rm I} = \frac{I_{\rm OUT}}{I_{\rm IN}} = \frac{g_{\rm m7} + g_{\rm DS7}}{g_{\rm m7} + g_{\rm DS7} + s \, C_{\rm GS7}} \approx \frac{g_{\rm m7}}{g_{\rm m7}} = \frac{1}{1 + s \, \tau}$$

Stabilizzazione del punto di lavoro di uno stadio MOS

Consideriamo i circuiti di figura 125 e analizziamolo nelle ipotesi in cui $R_{L} \rightarrow \infty$, caso in cui $I_{D1} = I_{D2}$.

figura 125 - Circuito per la stabilizzazione del punto di lavoro

Le correnti di drain di M1 e M2 sono date da:

$$\begin{split} I_{D1} &= \beta_1 \; (V_{GSQ} - V_i - V_T)^2 \; [1 + \lambda \; (V_{DD} - V_o)] \\ I_{D2} &= \beta_2 \; (V_{GSQ} + V_i - V_T)^2 \; [1 + \lambda \; (V_o + V_{DD})] \end{split}$$

Supponiamo che i due dispositivi siano uguali:

$$\beta_{1} = \beta_{2}$$

$$V_{Tn} = |V_{Tp}| = V_{T}$$

$$\lambda_{n} = \lambda_{p} = \lambda$$

$$V_{OVQ} = V_{GSQ} - V_{T}$$

Uguagliando le correnti si ha:

$$\begin{split} (V_{OVQ} - V_i)^2 \left[1 + \lambda (V_{DD} - V_o) \right] &= (V_{OVQ} + V_i)^2 \left[1 + \lambda (V_o + V_{DD}) \right] \\ (V_{OVQ} - V_i)^2 (1 + \lambda V_{DD}) - (V_{OVQ} + V_i)^2 (1 + \lambda V_{DD}) &= (V_{OVQ} - V_i)^2 \lambda V_o + (V_{OVQ} + V_i)^2 \lambda V_o \\ &\quad 4 V_{OVQ} V_i (1 + \lambda V_{DD}) = 2 \lambda V_o (V_{OVQ}^2 + V_i^2) \end{split}$$

Michele Marino – mmelectronics@tim.it Università degli studi di Roma "La Sapienza" Elettronica analogica con applicazioni Prof. Alessandro Trifiletti

Utilizzando l'approssimazione (per x<<1):

$$\frac{1}{1+x} \approx 1-x$$

La relazione precedente diventa quindi la seguente:

$$V_o = G V_i \left(1 - \frac{V_i^2}{V_{OVQ^2}} \right)$$

dove G rappresenta il guadagno di piccolo segnale.

Amplificatore operazionale	2
Amplificatori operazionali di corrente (COA)	
Analisi della cella differenziale BJT standard	
Errori di offset di ingresso della cella differenziale BJT	32
Tensione di offset di ingresso nella cella differenziale MOS	39
Analisi di un BJT in configurazione ad emettitore comune	41
Analisi di un FET in configurazione a source comune	43
Analisi di un BJT ad emettitore comune con degenerazione	
Analisi di un FET a source comune con degenerazione	47
Analisi di un BJT in configurazione a base comune	
Analisi di un FET in configurazione a gate comune	52
Analisi di un BJT in configurazione a collettore comune	54
Analisi di un FET in configurazione a drain comune	57
Analisi di un BJT in configurazione cascode (CE-CB)	60
Risposta in frequenza degli amplificatori: effetto Miller	62
Metodi di compensazione (moltiplicazione per effetto Miller)	
Specchi di corrente	71
Generatore di corrente di Widlar	74
Generatore di corrente di Wilson	75
Retroazione parallelo-serie con effetto di carico	78
Stadio amplificatore MOSFET a due stadi (OPA 2S)	
Effetti delle asimmetrie nella cella differenziale standard	
OPA 15	113
OPA 2S Cascode	114
Stabilizzazione del punto di lavoro di uno stadio MOS	120