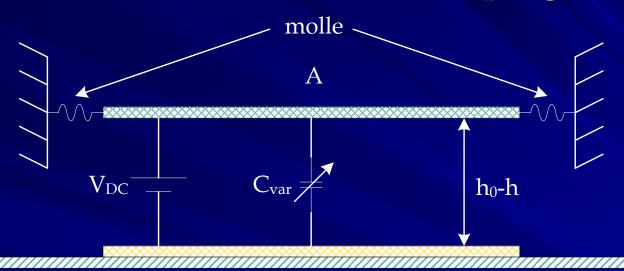
Sistemi Microelettromeccanici

Università degli studi di Roma

"La Sapienza"

Progettazione di una capacità variabile in tecnologia MEMS µTek Corporation

Paolo Croene - Fabrizio Del Grosso - Lorenzo Magliocchetti - Arrigo Marchiori


Michele Marino - Paolo Stegagno - Francesco Vecchioli

Prof. Marco Balucani Ing. Rocco Crescenzi

A.A.2006-2007

Introduzione al progetto

$$C_{\text{var}} = \frac{\varepsilon A}{h_0 - h}$$

 $50 \text{ fF} \le C_{\text{var}} \le 100 \text{fF}$

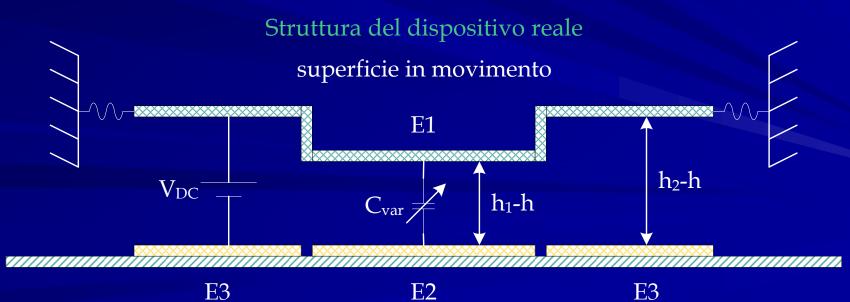
Capacità variabile convenzionale

Forza elettrostatica:

$$F_e = \frac{1}{2} \left[\frac{C_{\text{var}} V^2_{DC}}{\left(h_0 - h \right)} \right]$$

Considerazione della forza elettrostatica come una forza elastica:

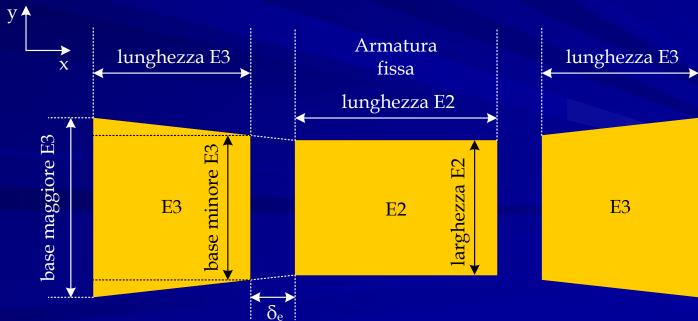
$$F_e = K_e (h_0 - h)$$


$$k_e = \left| \frac{\partial F_e}{\partial (h_0 - h)} \right| = \frac{C_{\text{var}} V_{DC}^2}{2(h_0 - h)^2}$$

Introduzione al progetto

Forza di richiamo molle: $F_m = 2K_m h$


All'equilibrio:
$$F_m = F_e \Rightarrow k_e = \frac{2k_m h}{h_0 - h}$$


$$k_e = k_m \text{ per } h = \frac{h_0}{3} \rightarrow \text{Tensione di Pull-in}$$

Struttura del dispositivo

Struttura del dispositivo

Lunghezza E2 =
$$80\mu m = L_{E2}$$

Larghezza E2 = $100\mu m = W_{E2}$
Lunghezza E3 = $20\mu m = L_{E3}$
Base maggiore E3 = $150\mu m = B_M$
Base minore E3 = $117\mu m = B_m$

In questo modo il componente assume una forma più quadrata

Maggiore densità di integrazione

Essendo il momento M = F * b, a parità di momento M sull'armatura sospesa, la forza esercitata sulle travi diminuisce

$$A_{E2} = 8000 \mu m^2$$

 $A_{E3} = 5340 \mu m^2$

Dimensionamento struttura

Altezza massima e minima dell'armatura E1:

$$h_{1MAX} = \frac{\varepsilon_0 A_{E2}}{C_{\min}} = 1.4 \mu m$$

$$h_{1\min} = \frac{\varepsilon_0 A_{E2}}{C_{MAX}} = 0.7 \mu m$$

$$\delta h = 0.7 \mu m$$

Condizione per evitare il pull-in: $\delta h < \frac{h_2}{3} \Rightarrow h_2 > 2.1 \mu m \Rightarrow h_2 = 2.3 \mu m$

Capacità tra le armature E3 e l'armatura E1: $C_{E3} = \frac{\mathcal{E}_0 \cdot A_{E3}}{h_2 - \delta h} = 41.5 \, fF$

forza elettrostatica

$$\begin{cases}
F_e = 1.87 \,\mu N \\
F_p = 2.537 \,n N
\end{cases} \Rightarrow F_p trascurabile$$

Dimensionamento struttura

$$EI\frac{d^4w}{dx^4} = 0 \Rightarrow \text{ integrando quattro volte } \Rightarrow w(x) = A + Bx + \frac{1}{2}Cx^2 + \frac{1}{6}Dx^3$$

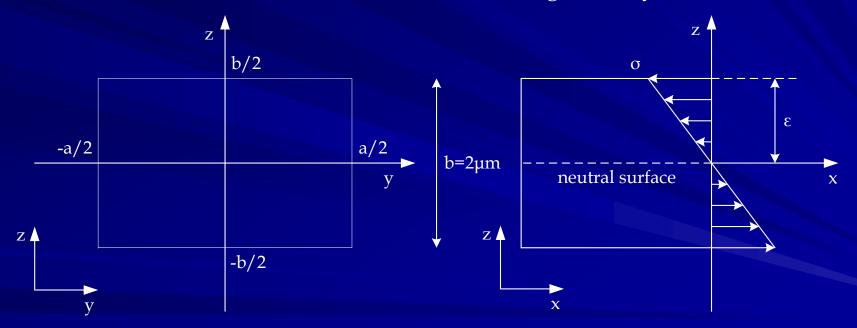
$$w\big|_{x=0}=0$$

$$\left|w\right|_{x=0}=0$$

Condizioni al contorno:

$$M\Big|_{x=L} = -EI \frac{d^2w}{dx^2}\Big|_{x=L} = 0$$

$$T\big|_{x=L} = -EI \frac{d^3 w}{dx^3}\bigg|_{x=L} = F$$


Scostamento della trave in funzione di x:
$$w(x) = \left(\frac{FL}{2EI}\right)x^2 - \frac{1}{6}\left(\frac{F}{EI}\right)x^3$$

Scostamento massimo all'estremità della trave (x=L): $w(L) = \frac{1}{3} \left(\frac{F}{EI} \right) L^3 \Rightarrow L_1^3 \left(\frac{3w(L)EI}{F} \right)$

Dimensionamento struttura

Forza elettrostatica ripartita sulle quattro travi: $F = \frac{F_e}{f}$

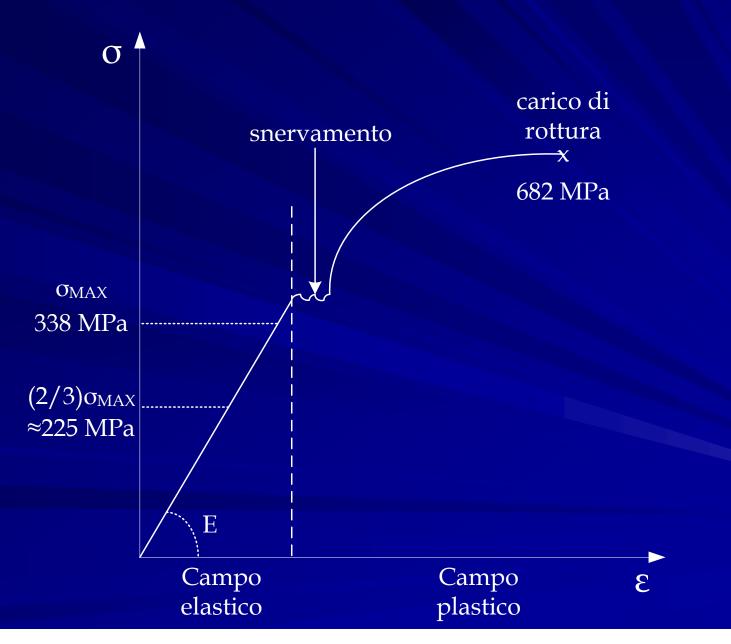
Momento di inerzia della trave lungo l'asse y

$$I_{yy} = \int_{-b/2}^{b/2} (az^2) dz = \frac{ab^3}{12}$$

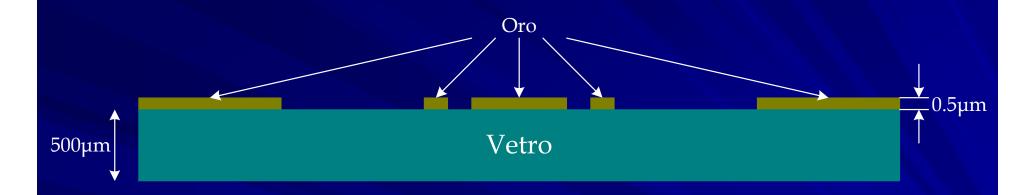
Calcolo stress sulle travi

Calcolo lunghezza trave:
$$L=\sqrt[3]{\frac{Eab^3}{F_e}}\delta h$$

$$\begin{cases} a=3\mu m\\ b=2\mu m\\ E=207GPa\\ \delta h=0.7\mu m \end{cases}$$


Deformazione trave:
$$\varepsilon_x = -\frac{z}{\rho} \Rightarrow \frac{1}{\rho} = w''(x) \Rightarrow \varepsilon_x = -\left[\frac{F_e}{4EI}(L-x)\right]z$$

Sforzi sulla trave:
$$\sigma(x, z) = E \cdot \varepsilon_x = -\left[\frac{F_e}{4I}(L - x)\right]z$$


Sforzo massimo nel punto in cui la trave è incastrata (x = 0) e modulo di z massimo (z = b/2):

$$\sigma_{MAX} = \sigma \left(0, -\frac{b}{2}\right) = \frac{F_e L b}{8I} = 28.7 MPa$$

Calcolo stress sulle travi

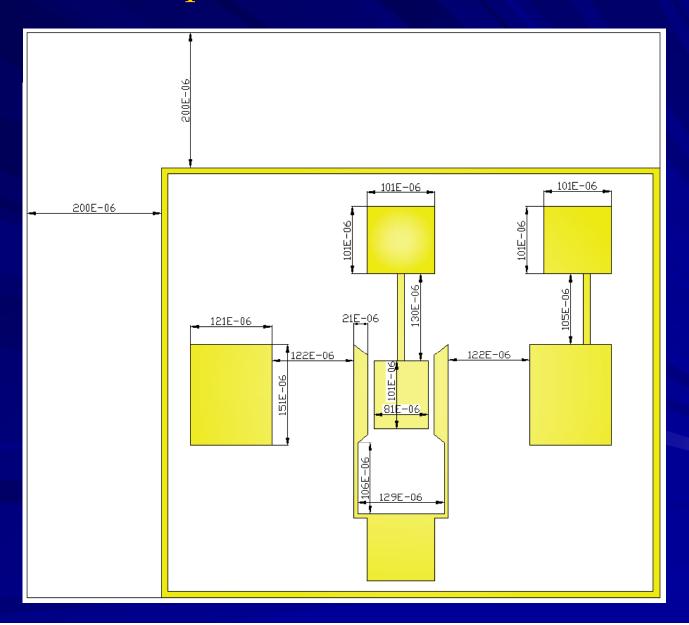
Passi di processo - Deposizione ed etching oro

➤ Applicazione resist AZ1518

➤ Soft baking

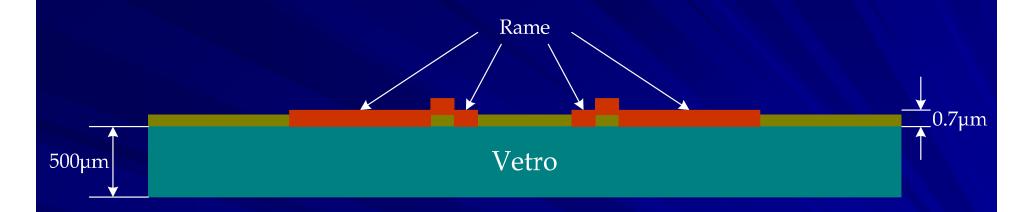
► Esposizione "1x Contact Aligner"

>Sviluppo "AZ"

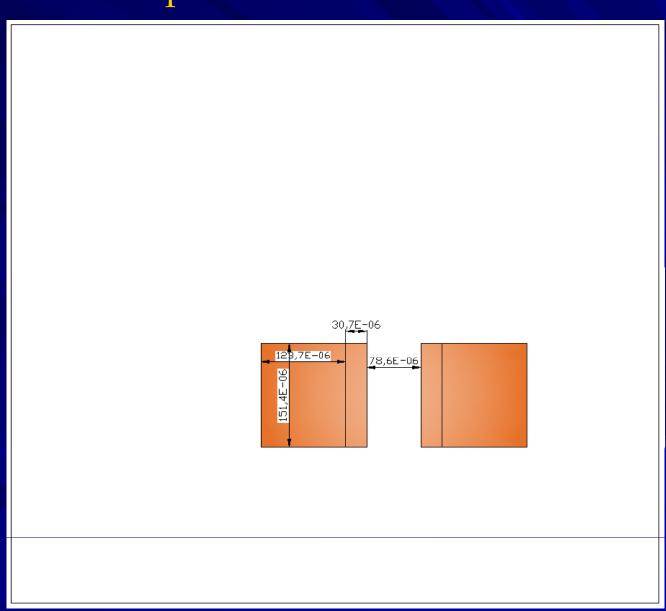

▶Baking

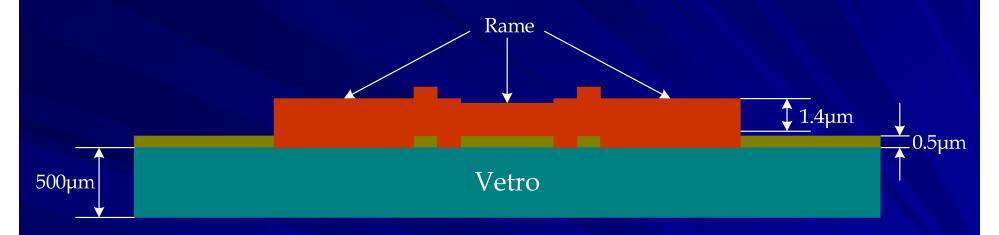
>Etching bagnato

➤ Stripping organico


▶Pulizia "Piranha"

Passi di processo - Prima maschera


Passi di processo - Deposizione ed etching rame


- ➤ Applicazione resist AZ1518
 - ➤ Soft baking
- ➤ Esposizione "1x Contact Aligner"
 - ►Sviluppo "AZ"
 - **▶**Baking
- ➤ Etching bagnato "cloruro ferrico"
 - ➤ Stripping organico
 - ▶Pulizia "Piranha"

Passi di processo – Seconda maschera

Passi di processo - Deposizione ed etching rame

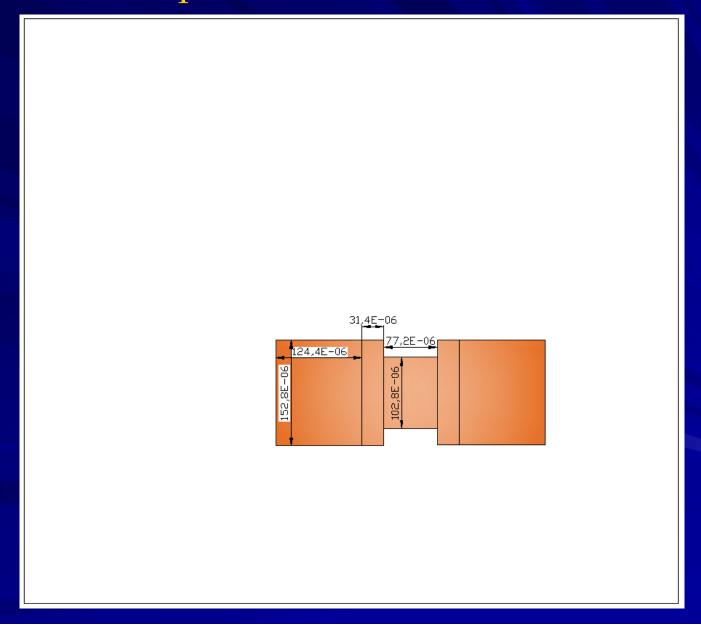
➤ Applicazione resist AZ1518

➤ Soft baking

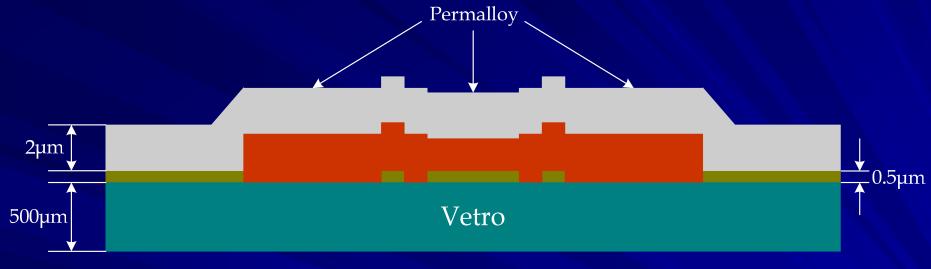
► Esposizione "1x Contact Aligner"

>Sviluppo "AZ"

▶Baking


➤ Etching bagnato "cloruro ferrico"

➤ Stripping organico


▶Pulizia "Piranha"

Passi di processo – Seconda maschera

Passi di processo - Deposizione ed etching permalloy

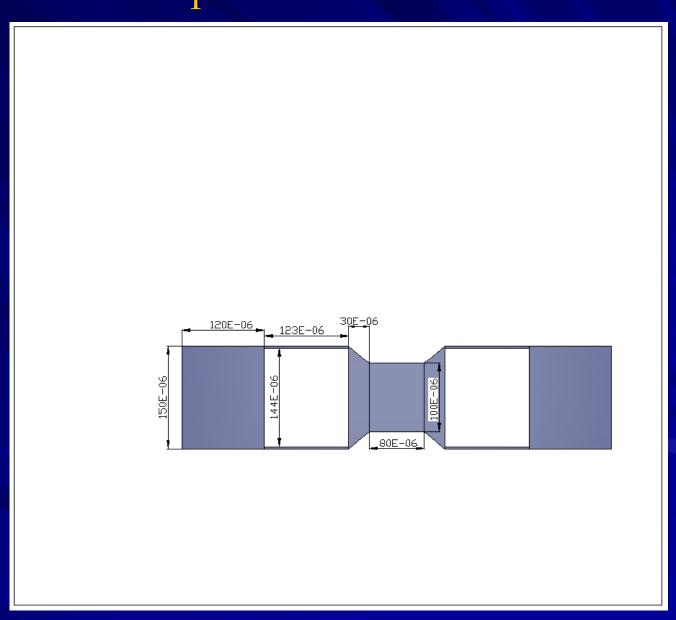
➤ Applicazione resist AZ4620

➤ Soft baking

► Esposizione "1x Contact Aligner"

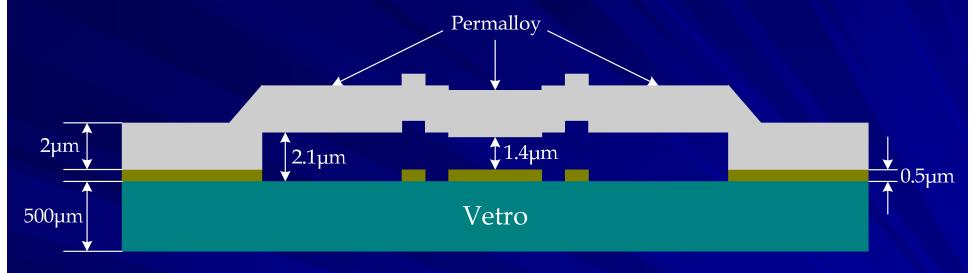
>Sviluppo "AZ"

≽Baking


➤RIE al plasma

➤ Stripping organico

▶Pulizia "Piranha"



Passi di processo – Terza maschera

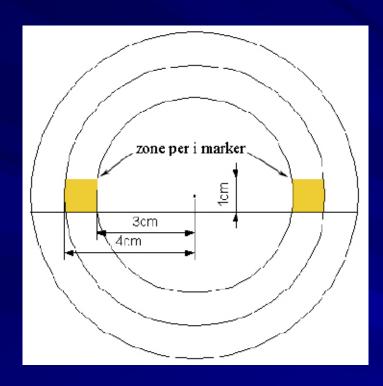
Passi di processo - Rimozione rame

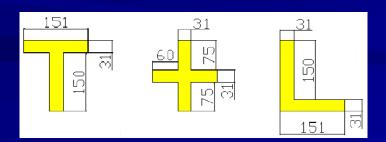
➤ Applicazione resist AZ1518

➤ Soft baking

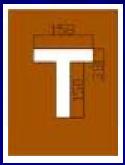
➤ Esposizione "1x Contact Aligner"

>Sviluppo "AZ"

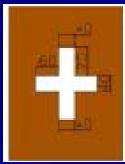

▶Baking

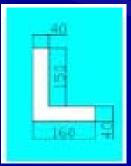

➤ Etching bagnato "cloruro ferrico"

➤ Stripping organico


▶Pulizia "Piranha"

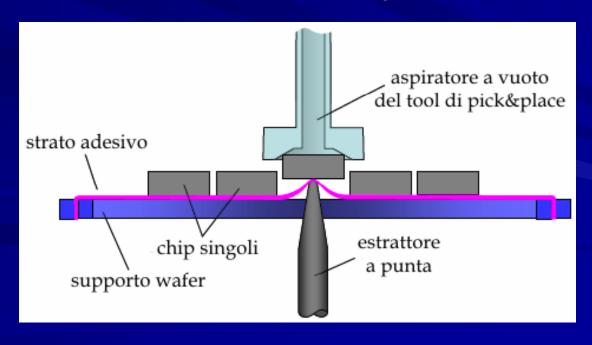
Passi di processo - Posizionamento marker




Marker sulla maschera relativa al 1° layer in rame

Marker sulla maschera relativa al 2° layer in rame

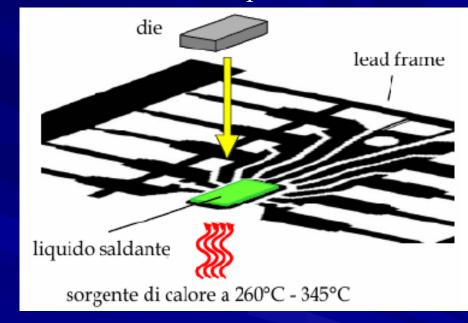
Marker sulla maschera relativa al layer in permalloy

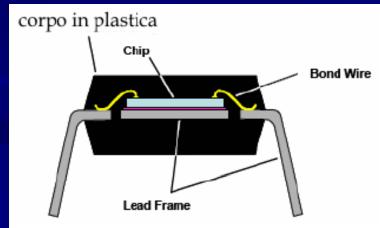


 \leftarrow Marker sulla maschera relativa al layer in oro

Separazione componenti – Dicing/Estrazione

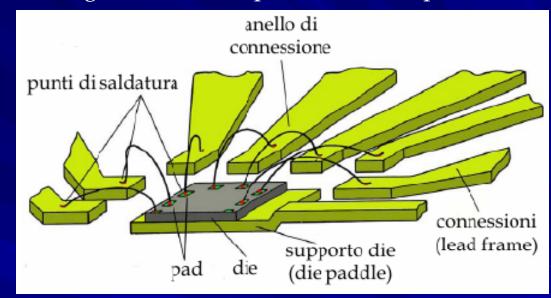
➤ taglio del wafer lungo le scribe lines, usando una sega diamantata➤ separazione dei singoli componenti

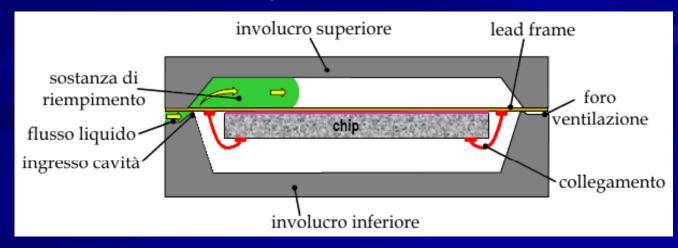

Macchina per l'estrazione dei singoli componenti



Separazione componenti - Die bond

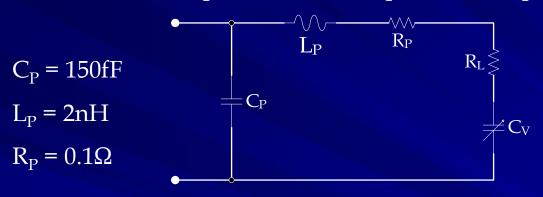
Posizionamento del dispositivo sul lead frame


Package DIP



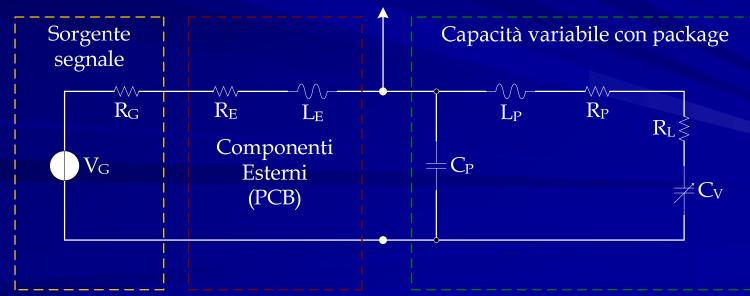
Separazione componenti - Wire bonding/Packaging

Collegamento del dispositivo verso i pin esterni



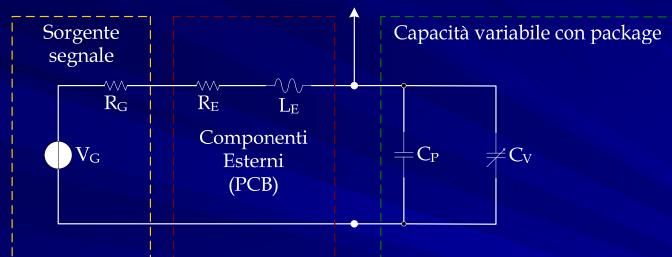
Creazione del package DIP

Simulazioni - Analisi AC


Circuito equivalente del dispositivo con package

 $R_L \approx 1\Omega$ $50 \mathrm{fF} \leq C_\mathrm{V} \leq 100 \mathrm{fF}$

Circuito equivalente del filtro


Uscita filtro

Simulazioni - Analisi AC

Circuito equivalente semplificato del filtro

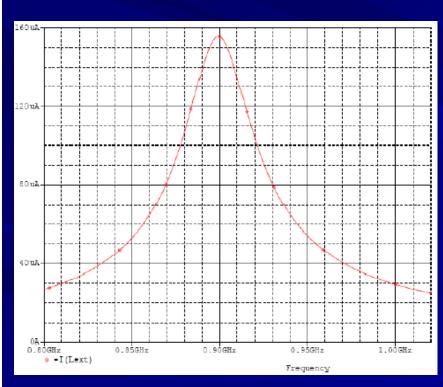
$$I(\omega) = \frac{j\omega CV(\omega)}{1 + j\omega CR - \omega^2 LC}$$

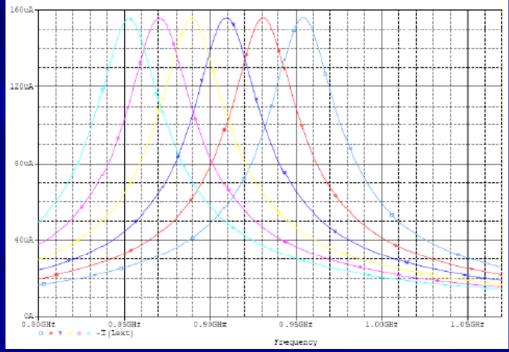
$$C = C_P + C_{Vmid} = (150 + 75) \text{ fF} = 225 \text{ fF}$$

$$f_0 = 900 \text{ MHz}$$

Comportamento resistivo per:
$$1 - \omega^2 LC = 0 \Rightarrow \omega_0 = \sqrt{\frac{1}{LC}} \Rightarrow L_E = \frac{1}{\omega_0^2 C} \cong 139nH$$

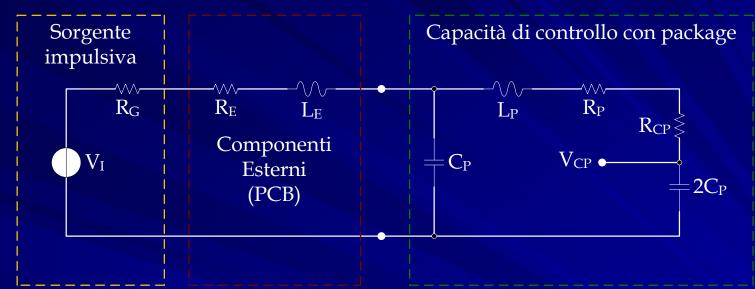
Due induttanze in serie da 100nH e 39nH



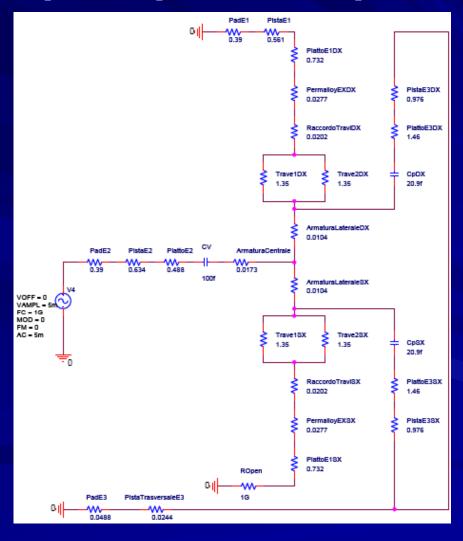

Simulazioni - Analisi AC

Poli complessi coniugati per: $Q > \frac{1}{2}$

in genere $Q \ge 10 \rightarrow Q = 35$

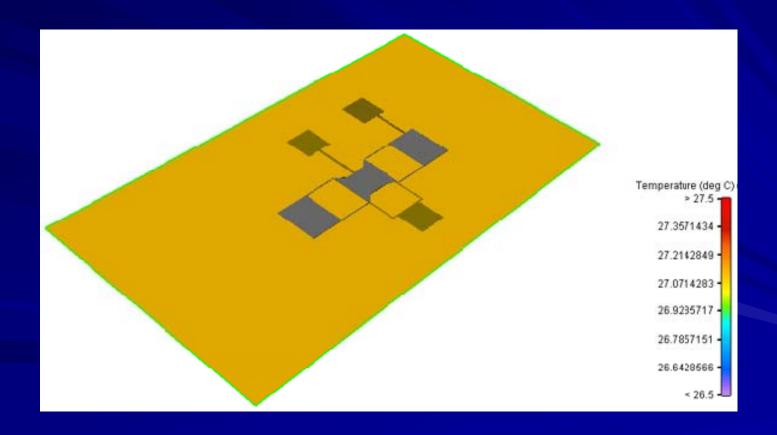

$$Q = \frac{\omega_0 L}{R} \Rightarrow R_E = \frac{\omega_0 L}{Q} = 22.45\Omega \Rightarrow R_E = 22\Omega$$

Simulazioni - Analisi transitoria

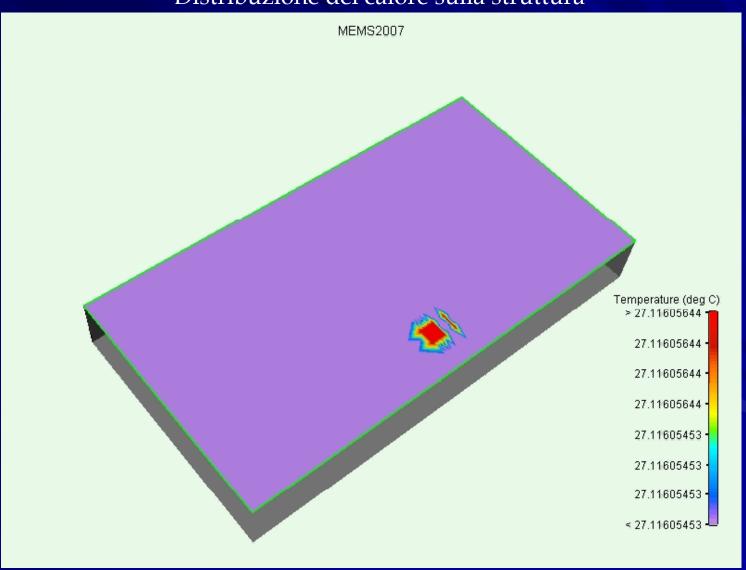

tempo di salita = 10ns tempo di discesa = 10ns larghezza impulso = 20ns valore minimo dell'impulso = 0V valore massimo dell'impulso = 12V

Overshoot massimo = 150mV

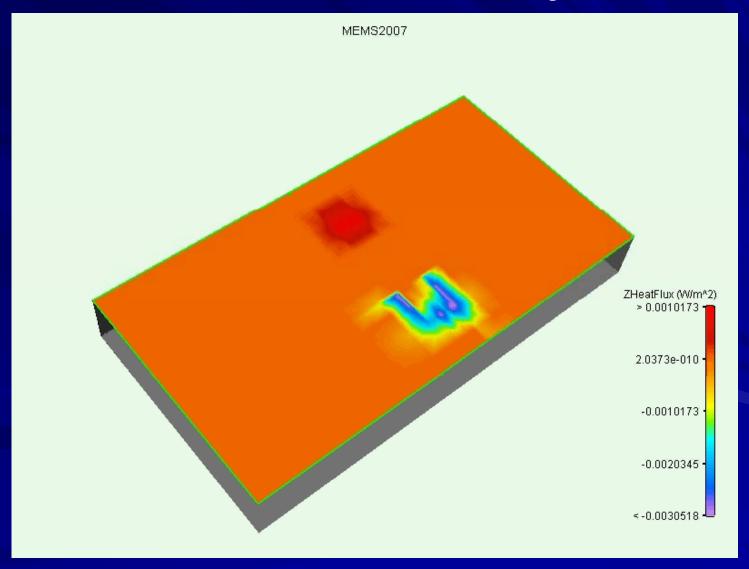
La tensione di controllo si assesta in circa 10ns



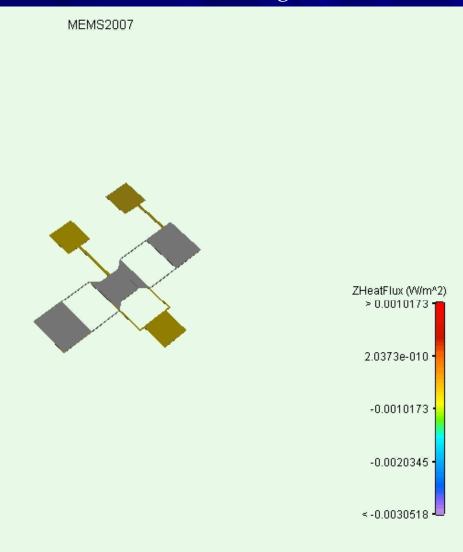
Circuito equivalente per il calcolo delle potenze in gioco



Potenze in gioco dell'ordine del pW


Dominio di simulazione (package SC70/4 pin): x = 1.6mm y = 0.8636mmz = 0.2mm

Distribuzione del calore sulla struttura



Distribuzione del calore sulla struttura lungo l'asse z

Distribuzione del calore sulla struttura lungo l'asse z

Tabella dei costi per l'evaporazione dell'oro

Table and the costs per 1 of the periodic them ere		
Costi fonderia		
Primi 1000 Å	\$ 100,00	
Å addizionali	\$ 0,065	
Passo di processo	Costo per lotto	Costo totale
Costo set-up		\$ 150,00
Evaporazione	\$ 360,00	\$ 360,00
Totale		\$ 510,00

Tabella dei costi per la prima litografia

Passo di processo	Per wafer	Per lotto	Totale
Maschera "Soda Lime"			\$ 450,00
Applicazione resist AZ1518	\$ 5,00		\$ 125,00
Esp. "1x Contact Aligner"	\$ 7,00		\$ 175,00
Sviluppo "AZ"		\$ 20,00	\$ 20,00
Soft baking		\$ 25,00	\$ 25,00
Etching bagnato dell'oro		\$ 35,00	\$ 35,00
Stripping resist organico		\$ 50,00	\$ 50,00
Pulizia "Piranha"		\$ 50,00	\$ 50,00
Totale			\$ 930,00

Tabella dei costi per l'evaporazione del rame

Costi fonderia			
Primi 1000 Å	\$ 30,00		
Å addizionali	\$ 0,015		
Passo di processo	Costo per lotto	Costo totale	
Costo set-up		\$ 150,00	
Evaporazione	\$ 120,00	\$ 120,00	
Totale		\$ 270,00	

Tabella dei costi per la seconda e terza litografia

Passo di processo	Per wafer	Per lotto	Totale
Maschera "Soda Lime"			\$ 450,00
Applicazione resist AZ1518	\$ 5,00		\$ 125,00
Esp. "1x Contact Aligner"	\$ 7,00		\$ 175,00
Sviluppo "AZ"		\$ 20,00	\$ 20,00
Soft baking		\$ 25,00	\$ 25,00
Etching bagnato del rame		\$ 25,00	\$ 25,00
Stripping resist organico		\$ 50,00	\$ 50,00
Pulizia "Piranha"		\$ 50,00	\$ 50,00
Totale			\$ 920,00

Tabella dei costi per l'evaporazione del rame

Costi fonderia				
Primi 1000 Å	\$ 30,00			
Å addizionali	\$ 0,015			
Passo di processo	Costo per lotto	Costo totale		
Costo set-up		\$ 150,00		
Evaporazione	\$ 225,00	\$ 225,00		
Totale		\$ 375,00		

Tabella dei costi per l'evaporazione del permalloy

Costi fonderia		
Primi 1000 Å	\$ 30,00	
Å addizionali	\$ 0,015	
Passo di processo	Costo per lotto	Costo totale
Costo set-up		\$ 150,00
Evaporazione	\$ 315,00	\$ 315,00
Totale		\$ 465,00

Tabella dei costi per la quarta litografia

Passo di processo	Per wafer	Per lotto	Totale
Maschera "Soda Lime"			\$ 450,00
Applicazione resist AZ4620	\$ 5,00		\$ 125,00
Esp. "1x Contact Aligner"	\$ 7,00		\$ 175,00
Sviluppo "AZ"		\$ 20,00	\$ 20,00
Soft baking		\$ 25,00	\$ 25,00
Standard RIE	\$ 25,00		\$ 625,00
Stripping resist organico		\$ 50,00	\$ 50,00
Pulizia "Piranha"		\$ 50,00	\$ 50,00
Totale			\$ 1520,00

Tabella dei costi per l'underetching del rame

Passo di processo	Per wafer	Per lotto	Totale
Attacco bagnato al rame		\$ 25,00	\$ 25,00
Pulizia "Piranha"		\$ 50,00	\$ 50,00
Totale			\$ 75,00

Tabella dei costi per il dicing

Passo di processo	Per taglio	Per lotto	Totale
Costi set-up			\$ 50,00
Costi per wafer		\$ 35,00	\$ 875,00
Dicing	\$ 0,30	\$ 69,30	\$ 1732,50
Totale			\$ 2657,50

Costi totali

Quantità da produrre		
Wafer	25	
Comp/wafer	9640	
Totale componenti	241000	
Passo di processo	Costo per wafer	Costo totale
Wafer di vetro	\$ 15,00	\$ 375,00
Evaporazione oro		\$ 510,00
Prima litografia		\$ 930,00
Evaporazione rame		\$ 270,00
Seconda litografia		\$ 920,00
Seconda evaporazione rame		\$ 375,00
Terza litografia		\$ 920,00
Evaporazione permalloy		\$ 465,00
Quarta litografia		\$ 1520,00
Underetching rame		\$75,00
Passivazione		\$ 0,00
Dicing		\$ 2680,00
Packaging	\$ 915,80	\$ 22895,00
Totale		\$ 31935,00
Per wafer		\$ 1277,40
Per componente		\$ 0,13

Rendering 3D del dispositivo

